Spaces:
Sleeping
Sleeping
Update utility.py (#3)
Browse files- Update utility.py (f02a873dd316beda860aaedc9efaf823adaebf19)
Co-authored-by: Raphael M <[email protected]>
- utility.py +71 -0
utility.py
CHANGED
@@ -4,6 +4,15 @@ from datetime import datetime
|
|
4 |
import openai
|
5 |
from google.cloud import firestore
|
6 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Make API connection
|
9 |
load_dotenv()
|
@@ -19,6 +28,49 @@ client = openai.OpenAI(
|
|
19 |
base_url="https://api.sambanova.ai/v1",
|
20 |
)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Generate AI response from user input
|
23 |
def generateResponse(prompt,model='Meta-Llama-3.1-70B-Instruct'):
|
24 |
#----- Call API to classify and extract relevant transaction information
|
@@ -218,6 +270,23 @@ def parse_multiple_transactions(response_text):
|
|
218 |
|
219 |
return transactions
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
def create_inventory(user_phone, transaction_data):
|
222 |
for transaction in transaction_data:
|
223 |
item_name = transaction['details']['item'] # assumes unique item name
|
@@ -289,6 +358,8 @@ def delete_transaction(user_phone, transaction_id):
|
|
289 |
print("Transaction deleted successfully!")
|
290 |
|
291 |
|
|
|
|
|
292 |
# Example usage
|
293 |
# response_text = """
|
294 |
# The information provided indicates that you want to **create/record** a new transaction.
|
|
|
4 |
import openai
|
5 |
from google.cloud import firestore
|
6 |
from dotenv import load_dotenv
|
7 |
+
from pandasai import SmartDatalake
|
8 |
+
from pandasai import Agent
|
9 |
+
from pandasai.responses.response_parser import ResponseParser
|
10 |
+
import pandas as pd
|
11 |
+
from pandasai.llm import OpenAI
|
12 |
+
#from langchain.llms.sambanova import Sambaverse
|
13 |
+
#from langchain_community.llms.sambanova import Sambaverse
|
14 |
+
from langchain_community.chat_models.sambanova import ChatSambaNovaCloud
|
15 |
+
|
16 |
|
17 |
# Make API connection
|
18 |
load_dotenv()
|
|
|
28 |
base_url="https://api.sambanova.ai/v1",
|
29 |
)
|
30 |
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
sambaverse_api_key = os.environ.get("SAMBAVERSE_API_KEY")
|
35 |
+
|
36 |
+
|
37 |
+
llm = ChatSambaNovaCloud(
|
38 |
+
model="Meta-Llama-3.1-70B-Instruct",
|
39 |
+
max_tokens=1024,
|
40 |
+
temperature=0.7,
|
41 |
+
top_k=1,
|
42 |
+
top_p=0.01,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
print(llm.invoke("Why should I use open source models?"))
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
class FlaskResponse(ResponseParser):
|
51 |
+
def __init__(self, context) -> None:
|
52 |
+
super().__init__(context)
|
53 |
+
|
54 |
+
def format_dataframe(self, result):
|
55 |
+
return result['value'].to_html()
|
56 |
+
|
57 |
+
def format_plot(self, result):
|
58 |
+
# Save the plot using savefig
|
59 |
+
try:
|
60 |
+
|
61 |
+
img_path = result['value']
|
62 |
+
|
63 |
+
|
64 |
+
except ValueError:
|
65 |
+
img_path = str(result['value'])
|
66 |
+
print("value error!", img_path)
|
67 |
+
|
68 |
+
print("response_class_path:", img_path)
|
69 |
+
return img_path
|
70 |
+
|
71 |
+
def format_other(self, result):
|
72 |
+
return str(result['value'])
|
73 |
+
|
74 |
# Generate AI response from user input
|
75 |
def generateResponse(prompt,model='Meta-Llama-3.1-70B-Instruct'):
|
76 |
#----- Call API to classify and extract relevant transaction information
|
|
|
270 |
|
271 |
return transactions
|
272 |
|
273 |
+
def read_datalake(user_phone, user_question):
|
274 |
+
inventory_ref = db.collection("users").document(user_phone).collection("inventory")
|
275 |
+
|
276 |
+
sales_ref = db.collection("users").document(user_phone).collection('sales')
|
277 |
+
|
278 |
+
inventory_list = [doc.to_dict() for doc in inventory_ref.stream()]
|
279 |
+
sales_list = [doc.to_dict() for doc in sales_ref.stream()]
|
280 |
+
|
281 |
+
inventory_df = pd.DataFrame(inventory_list)
|
282 |
+
sales_df = pd.DataFrame(sales_list)
|
283 |
+
|
284 |
+
|
285 |
+
lake = SmartDatalake([inventory_df, sales_df], config={"llm": llm, "response_parser": FlaskResponse, "enable_cache": False, "save_logs": False})
|
286 |
+
response = lake.chat(user_question)
|
287 |
+
|
288 |
+
return response
|
289 |
+
|
290 |
def create_inventory(user_phone, transaction_data):
|
291 |
for transaction in transaction_data:
|
292 |
item_name = transaction['details']['item'] # assumes unique item name
|
|
|
358 |
print("Transaction deleted successfully!")
|
359 |
|
360 |
|
361 |
+
|
362 |
+
|
363 |
# Example usage
|
364 |
# response_text = """
|
365 |
# The information provided indicates that you want to **create/record** a new transaction.
|