Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
model2 = RealESRGAN(device, scale=2)
|
@@ -11,6 +12,9 @@ model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
|
11 |
model8 = RealESRGAN(device, scale=8)
|
12 |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
def inference(image, size):
|
16 |
if image is None:
|
@@ -20,9 +24,6 @@ def inference(image, size):
|
|
20 |
if width >= 5000 or height >= 5000:
|
21 |
raise gr.Error("The image is too large.")
|
22 |
|
23 |
-
if torch.cuda.is_available():
|
24 |
-
torch.cuda.empty_cache()
|
25 |
-
|
26 |
if size == '2x':
|
27 |
result = model2.predict(image.convert('RGB'))
|
28 |
elif size == '4x':
|
|
|
2 |
from PIL import Image
|
3 |
from RealESRGAN import RealESRGAN
|
4 |
import gradio as gr
|
5 |
+
import gc
|
6 |
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
model2 = RealESRGAN(device, scale=2)
|
|
|
12 |
model8 = RealESRGAN(device, scale=8)
|
13 |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
14 |
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
torch.cuda.empty_cache()
|
17 |
+
gc.collect()
|
18 |
|
19 |
def inference(image, size):
|
20 |
if image is None:
|
|
|
24 |
if width >= 5000 or height >= 5000:
|
25 |
raise gr.Error("The image is too large.")
|
26 |
|
|
|
|
|
|
|
27 |
if size == '2x':
|
28 |
result = model2.predict(image.convert('RGB'))
|
29 |
elif size == '4x':
|