Spaces:
Running
Running
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) | |
# | |
# See ../LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import contextlib | |
import logging | |
import random | |
from collections import defaultdict | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from lhotse.utils import fix_random_seed | |
from torch import Tensor | |
from torch.optim import Optimizer | |
class BatchedOptimizer(Optimizer): | |
""" | |
This class adds to class Optimizer the capability to optimize parameters in batches: | |
it will stack the parameters and their grads for you so the optimizer can work | |
on tensors with an extra leading dimension. This is intended for speed with GPUs, | |
as it reduces the number of kernels launched in the optimizer. | |
Args: | |
params: | |
""" | |
def __init__(self, params, defaults): | |
super(BatchedOptimizer, self).__init__(params, defaults) | |
def batched_params(self, param_group, group_params_names): | |
""" | |
This function returns (technically, yields) a list of | |
of tuples (p, state), where | |
p is a `fake` parameter that is stacked (over axis 0) from real parameters | |
that share the same shape, and its gradient is also stacked; | |
`state` is the state corresponding to this batch of parameters | |
(it will be physically located in the "state" for one of the real | |
parameters, the last one that has any particular shape and dtype). | |
This function is decorated as a context manager so that it can | |
write parameters back to their "real" locations. | |
The idea is, instead of doing: | |
<code> | |
for p in group["params"]: | |
state = self.state[p] | |
... | |
</code> | |
you can do: | |
<code> | |
with self.batched_params(group["params"]) as batches: | |
for p, state, p_names in batches: | |
... | |
</code> | |
Args: | |
group: a parameter group, which is a list of parameters; should be | |
one of self.param_groups. | |
group_params_names: name for each parameter in group, | |
which is List[str]. | |
""" | |
batches = defaultdict( | |
list | |
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter | |
batches_names = defaultdict( | |
list | |
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str | |
assert len(param_group) == len(group_params_names) | |
for p, named_p in zip(param_group, group_params_names): | |
key = (str(p.dtype), *p.shape) | |
batches[key].append(p) | |
batches_names[key].append(named_p) | |
batches_names_keys = list(batches_names.keys()) | |
sorted_idx = sorted( | |
range(len(batches_names)), key=lambda i: batches_names_keys[i] | |
) | |
batches_names = [ | |
batches_names[batches_names_keys[idx]] for idx in sorted_idx | |
] | |
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] | |
stacked_params_dict = dict() | |
# turn batches into a list, in deterministic order. | |
# tuples will contain tuples of (stacked_param, state, stacked_params_names), | |
# one for each batch in `batches`. | |
tuples = [] | |
for batch, batch_names in zip(batches, batches_names): | |
p = batch[0] | |
# we arbitrarily store the state in the | |
# state corresponding to the 1st parameter in the | |
# group. class Optimizer will take care of saving/loading state. | |
state = self.state[p] | |
p_stacked = torch.stack(batch) | |
grad = torch.stack( | |
[ | |
torch.zeros_like(p) if p.grad is None else p.grad | |
for p in batch | |
] | |
) | |
p_stacked.grad = grad | |
stacked_params_dict[key] = p_stacked | |
tuples.append((p_stacked, state, batch_names)) | |
yield tuples # <-- calling code will do the actual optimization here! | |
for ((stacked_params, _state, _names), batch) in zip(tuples, batches): | |
for i, p in enumerate(batch): # batch is list of Parameter | |
p.copy_(stacked_params[i]) | |
class ScaledAdam(BatchedOptimizer): | |
""" | |
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update | |
proportional to the norm of that parameter; and also learn the scale of the parameter, | |
in log space, subject to upper and lower limits (as if we had factored each parameter as | |
param = underlying_param * log_scale.exp()) | |
Args: | |
params: The parameters or param_groups to optimize (like other Optimizer subclasses) | |
lr: The learning rate. We will typically use a learning rate schedule that starts | |
at 0.03 and decreases over time, i.e. much higher than other common | |
optimizers. | |
clipping_scale: (e.g. 2.0) | |
A scale for gradient-clipping: if specified, the normalized gradients | |
over the whole model will be clipped to have 2-norm equal to | |
`clipping_scale` times the median 2-norm over the most recent period | |
of `clipping_update_period` minibatches. By "normalized gradients", | |
we mean after multiplying by the rms parameter value for this tensor | |
[for non-scalars]; this is appropriate because our update is scaled | |
by this quantity. | |
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. | |
Must satisfy 0 < beta <= beta2 < 1. | |
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the | |
scale of each parameter tensor and scalar parameters of the mode.. | |
If each parameter were decomposed | |
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale | |
would be a the scaling factor on the learning rate of p_scale. | |
eps: A general-purpose epsilon to prevent division by zero | |
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of | |
learning the scale on the parameters (we'll constrain the rms of each non-scalar | |
parameter tensor to be >= this value) | |
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of | |
learning the scale on the parameters (we'll constrain the rms of each non-scalar | |
parameter tensor to be <= this value) | |
scalar_max: Maximum absolute value for scalar parameters (applicable if your | |
model has any parameters with numel() == 1). | |
size_update_period: The periodicity, in steps, with which we update the size (scale) | |
of the parameter tensor. This is provided to save a little time | |
in the update. | |
clipping_update_period: if clipping_scale is specified, this is the period | |
""" | |
def __init__( | |
self, | |
params, | |
lr=3e-02, | |
clipping_scale=None, | |
betas=(0.9, 0.98), | |
scalar_lr_scale=0.1, | |
eps=1.0e-08, | |
param_min_rms=1.0e-05, | |
param_max_rms=3.0, | |
scalar_max=10.0, | |
size_update_period=4, | |
clipping_update_period=100, | |
parameters_names=None, | |
show_dominant_parameters=True, | |
): | |
assert parameters_names is not None, ( | |
"Please prepare parameters_names," | |
"which is a List[List[str]]. Each List[str] is for a group" | |
"and each str is for a parameter" | |
) | |
defaults = dict( | |
lr=lr, | |
clipping_scale=clipping_scale, | |
betas=betas, | |
scalar_lr_scale=scalar_lr_scale, | |
eps=eps, | |
param_min_rms=param_min_rms, | |
param_max_rms=param_max_rms, | |
scalar_max=scalar_max, | |
size_update_period=size_update_period, | |
clipping_update_period=clipping_update_period, | |
) | |
super(ScaledAdam, self).__init__(params, defaults) | |
assert len(self.param_groups) == len(parameters_names) | |
self.parameters_names = parameters_names | |
self.show_dominant_parameters = show_dominant_parameters | |
def __setstate__(self, state): | |
super(ScaledAdam, self).__setstate__(state) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
batch = True | |
for group, group_params_names in zip( | |
self.param_groups, self.parameters_names | |
): | |
with self.batched_params( | |
group["params"], group_params_names | |
) as batches: | |
# batches is list of pairs (stacked_param, state). stacked_param is like | |
# a regular parameter, and will have a .grad, but the 1st dim corresponds to | |
# a stacking dim, it is not a real dim. | |
if ( | |
len(batches[0][1]) == 0 | |
): # if len(first state) == 0: not yet initialized | |
clipping_scale = 1 | |
else: | |
clipping_scale = self._get_clipping_scale(group, batches) | |
for p, state, _ in batches: | |
# Perform optimization step. | |
# grad is not going to be None, we handled that when creating the batches. | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError( | |
"ScaledAdam optimizer does not support sparse gradients" | |
) | |
# State initialization | |
if len(state) == 0: | |
self._init_state(group, p, state) | |
self._step_one_batch(group, p, state, clipping_scale) | |
return loss | |
def _init_state(self, group: dict, p: Tensor, state: dict): | |
""" | |
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p | |
is actually the batch dimension, corresponding to batched-together | |
parameters of a given shape. | |
Args: | |
group: Dict to look up configuration values. | |
p: The parameter that we are initializing the state for | |
state: Dict from string to whatever state we are initializing | |
""" | |
size_update_period = group["size_update_period"] | |
state["step"] = 0 | |
kwargs = {"device": p.device, "dtype": p.dtype} | |
# 'delta' implements conventional momentum. There are | |
# several different kinds of update going on, so rather than | |
# compute "exp_avg" like in Adam, we store and decay a | |
# parameter-change "delta", which combines all forms of | |
# update. this is equivalent to how it's done in Adam, | |
# except for the first few steps. | |
state["delta"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
batch_size = p.shape[0] | |
numel = p.numel() // batch_size | |
numel = p.numel() | |
if numel > 1: | |
# "param_rms" just periodically records the scalar root-mean-square value of | |
# the parameter tensor. | |
# it has a shape like (batch_size, 1, 1, 1, 1) | |
param_rms = ( | |
(p ** 2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() | |
) | |
state["param_rms"] = param_rms | |
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) | |
state["scale_grads"] = torch.zeros( | |
size_update_period, *param_rms.shape, **kwargs | |
) | |
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam. | |
state["exp_avg_sq"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
def _get_clipping_scale( | |
self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]] | |
) -> float: | |
""" | |
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients | |
by this amount before applying the rest of the update. | |
Args: | |
group: the parameter group, an item in self.param_groups | |
tuples: a list of tuples of (param, state, param_names) | |
where param is a batched set of parameters, | |
with a .grad (1st dim is batch dim) | |
and state is the state-dict where optimization parameters are kept. | |
param_names is a List[str] while each str is name for a parameter | |
in batched set of parameters "param". | |
""" | |
assert len(tuples) >= 1 | |
clipping_scale = group["clipping_scale"] | |
(first_p, first_state, _) = tuples[0] | |
step = first_state["step"] | |
if clipping_scale is None or step == 0: | |
# no clipping. return early on step == 0 because the other | |
# parameters' state won't have been initialized yet. | |
return 1.0 | |
clipping_update_period = group["clipping_update_period"] | |
tot_sumsq = torch.tensor(0.0, device=first_p.device) | |
for (p, state, param_names) in tuples: | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError( | |
"ScaledAdam optimizer does not support sparse gradients" | |
) | |
if p.numel() == p.shape[0]: # a batch of scalars | |
tot_sumsq += ( | |
grad ** 2 | |
).sum() # sum() to change shape [1] to [] | |
else: | |
tot_sumsq += ((grad * state["param_rms"]) ** 2).sum() | |
tot_norm = tot_sumsq.sqrt() | |
if "model_norms" not in first_state: | |
first_state["model_norms"] = torch.zeros( | |
clipping_update_period, device=p.device | |
) | |
first_state["model_norms"][step % clipping_update_period] = tot_norm | |
if step % clipping_update_period == 0: | |
# Print some stats. | |
# We don't reach here if step == 0 because we would have returned | |
# above. | |
sorted_norms = first_state["model_norms"].sort()[0].to("cpu") | |
quartiles = [] | |
for n in range(0, 5): | |
index = min( | |
clipping_update_period - 1, | |
(clipping_update_period // 4) * n, | |
) | |
quartiles.append(sorted_norms[index].item()) | |
median = quartiles[2] | |
threshold = clipping_scale * median | |
first_state["model_norm_threshold"] = threshold | |
percent_clipped = ( | |
first_state["num_clipped"] * 100.0 / clipping_update_period | |
if "num_clipped" in first_state | |
else 0.0 | |
) | |
first_state["num_clipped"] = 0 | |
quartiles = " ".join(["%.3e" % x for x in quartiles]) | |
logging.info( | |
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " | |
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" | |
) | |
if step < clipping_update_period: | |
return 1.0 # We have not yet estimated a norm to clip to. | |
else: | |
try: | |
model_norm_threshold = first_state["model_norm_threshold"] | |
except KeyError: | |
logging.info( | |
"Warning: model_norm_threshold not in state: possibly " | |
"you changed config when restarting, adding clipping_scale option?" | |
) | |
return 1.0 | |
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) | |
if ans < 1.0: | |
first_state["num_clipped"] += 1 | |
if ans < 0.1: | |
logging.warn( | |
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" | |
) | |
if self.show_dominant_parameters: | |
assert p.shape[0] == len(param_names) | |
self._show_gradient_dominating_parameter(tuples, tot_sumsq) | |
return ans | |
def _show_gradient_dominating_parameter( | |
self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor | |
): | |
""" | |
Show information of parameter wihch dominanting tot_sumsq. | |
Args: | |
tuples: a list of tuples of (param, state, param_names) | |
where param is a batched set of parameters, | |
with a .grad (1st dim is batch dim) | |
and state is the state-dict where optimization parameters are kept. | |
param_names is a List[str] while each str is name for a parameter | |
in batched set of parameters "param". | |
tot_sumsq: sumsq of all parameters. Though it's could be calculated | |
from tuples, we still pass it to save some time. | |
""" | |
all_sumsq_orig = {} | |
for (p, state, batch_param_names) in tuples: | |
# p is a stacked batch parameters. | |
batch_grad = p.grad | |
if p.numel() == p.shape[0]: # a batch of scalars | |
batch_sumsq_orig = batch_grad ** 2 | |
# Dummpy values used by following `zip` statement. | |
batch_rms_orig = torch.ones(p.shape[0]) | |
else: | |
batch_rms_orig = state["param_rms"] | |
batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum( | |
dim=list(range(1, batch_grad.ndim)) | |
) | |
for name, sumsq_orig, rms, grad in zip( | |
batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad | |
): | |
proportion_orig = sumsq_orig / tot_sumsq | |
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) | |
assert torch.isclose( | |
sum([value[0] for value in all_sumsq_orig.values()]).cpu(), | |
torch.tensor(1.0), | |
) | |
sorted_by_proportion = { | |
k: v | |
for k, v in sorted( | |
all_sumsq_orig.items(), | |
key=lambda item: item[1][0], | |
reverse=True, | |
) | |
} | |
dominant_param_name = next(iter(sorted_by_proportion)) | |
( | |
dominant_proportion, | |
dominant_sumsq, | |
dominant_rms, | |
dominant_grad, | |
) = sorted_by_proportion[dominant_param_name] | |
logging.info( | |
f"Parameter Dominanting tot_sumsq {dominant_param_name}" | |
f" with proportion {dominant_proportion:.2f}," | |
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" | |
f"={dominant_sumsq:.3e}," | |
f" grad_sumsq = {(dominant_grad**2).sum():.3e}," | |
f" orig_rms_sq={(dominant_rms**2).item():.3e}" | |
) | |
def _step_one_batch( | |
self, group: dict, p: Tensor, state: dict, clipping_scale: float | |
): | |
""" | |
Do the step for one parameter, which is actually going to be a batch of | |
`real` parameters, with dim 0 as the batch dim. | |
Args: | |
group: dict to look up configuration values | |
p: parameter to update (actually multiple parameters stacked together | |
as a batch) | |
state: state-dict for p, to look up the optimizer state | |
""" | |
lr = group["lr"] | |
size_update_period = group["size_update_period"] | |
beta1 = group["betas"][0] | |
grad = p.grad | |
if clipping_scale != 1.0: | |
grad = grad * clipping_scale | |
step = state["step"] | |
delta = state["delta"] | |
delta.mul_(beta1) | |
batch_size = p.shape[0] | |
numel = p.numel() // batch_size | |
if numel > 1: | |
# Update the size/scale of p, and set param_rms | |
scale_grads = state["scale_grads"] | |
scale_grads[step % size_update_period] = (p * grad).sum( | |
dim=list(range(1, p.ndim)), keepdim=True | |
) | |
if step % size_update_period == size_update_period - 1: | |
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..) | |
param_rms.copy_( | |
(p ** 2) | |
.mean(dim=list(range(1, p.ndim)), keepdim=True) | |
.sqrt() | |
) | |
if step > 0: | |
# self._size_update() learns the overall scale on the | |
# parameter, by shrinking or expanding it. | |
self._size_update(group, scale_grads, p, state) | |
if numel == 1: | |
# For parameters with 1 element we just use regular Adam. | |
# Updates delta. | |
self._step_scalar(group, p, state) | |
else: | |
self._step(group, p, state) | |
state["step"] = step + 1 | |
def _size_update( | |
self, group: dict, scale_grads: Tensor, p: Tensor, state: dict | |
) -> None: | |
""" | |
Called only where p.numel() > 1, this updates the scale of the parameter. | |
If we imagine: p = underlying_param * scale.exp(), and we are doing | |
gradient descent on underlying param and on scale, this function does the update | |
on `scale`. | |
Args: | |
group: dict to look up configuration values | |
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing | |
grads w.r.t. the scales. | |
p: The parameter to update | |
state: The state-dict of p | |
""" | |
param_rms = state["param_rms"] | |
beta1, beta2 = group["betas"] | |
size_lr = group["lr"] * group["scalar_lr_scale"] | |
param_min_rms = group["param_min_rms"] | |
param_max_rms = group["param_max_rms"] | |
eps = group["eps"] | |
step = state["step"] | |
batch_size = p.shape[0] | |
size_update_period = scale_grads.shape[0] | |
# correct beta2 for the size update period: we will have | |
# faster decay at this level. | |
beta2_corr = beta2 ** size_update_period | |
scale_exp_avg_sq = state[ | |
"scale_exp_avg_sq" | |
] # shape: (batch_size, 1, 1, ..) | |
scale_exp_avg_sq.mul_(beta2_corr).add_( | |
(scale_grads ** 2).mean( | |
dim=0 | |
), # mean over dim `size_update_period` | |
alpha=1 - beta2_corr, | |
) # shape is (batch_size, 1, 1, ...) | |
# The 1st time we reach here is when size_step == 1. | |
size_step = (step + 1) // size_update_period | |
bias_correction2 = 1 - beta2_corr ** size_step | |
# we don't bother with bias_correction1; this will help prevent divergence | |
# at the start of training. | |
denom = scale_exp_avg_sq.sqrt() + eps | |
scale_step = ( | |
-size_lr | |
* (bias_correction2 ** 0.5) | |
* scale_grads.sum(dim=0) | |
/ denom | |
) | |
is_too_small = param_rms < param_min_rms | |
is_too_large = param_rms > param_max_rms | |
# when the param gets too small, just don't shrink it any further. | |
scale_step.masked_fill_(is_too_small, 0.0) | |
# when it gets too large, stop it from getting any larger. | |
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period) | |
delta = state["delta"] | |
# the factor of (1-beta1) relates to momentum. | |
delta.add_(p * scale_step, alpha=(1 - beta1)) | |
def _step(self, group: dict, p: Tensor, state: dict): | |
""" | |
This function does the core update of self.step(), in the case where the members of | |
the batch have more than 1 element. | |
Args: | |
group: A dict which will be used to look up configuration values | |
p: The parameter to be updated | |
grad: The grad of p | |
state: The state-dict corresponding to parameter p | |
This function modifies p. | |
""" | |
grad = p.grad | |
lr = group["lr"] | |
beta1, beta2 = group["betas"] | |
eps = group["eps"] | |
param_min_rms = group["param_min_rms"] | |
step = state["step"] | |
exp_avg_sq = state["exp_avg_sq"] | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) | |
this_step = state["step"] - ( | |
state["zero_step"] if "zero_step" in state else 0 | |
) | |
bias_correction2 = 1 - beta2 ** (this_step + 1) | |
if bias_correction2 < 0.99: | |
# note: not in-place. | |
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) | |
denom = exp_avg_sq.sqrt() | |
denom += eps | |
grad = grad / denom | |
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) | |
delta = state["delta"] | |
delta.add_(grad * alpha) | |
p.add_(delta) | |
def _step_scalar(self, group: dict, p: Tensor, state: dict): | |
""" | |
A simplified form of the core update for scalar tensors, where we cannot get a good | |
estimate of the parameter rms. | |
""" | |
beta1, beta2 = group["betas"] | |
scalar_max = group["scalar_max"] | |
eps = group["eps"] | |
lr = group["lr"] * group["scalar_lr_scale"] | |
grad = p.grad | |
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
# bias_correction2 is like in Adam. Don't bother with bias_correction1; | |
# slower update at the start will help stability anyway. | |
bias_correction2 = 1 - beta2 ** (state["step"] + 1) | |
denom = (exp_avg_sq / bias_correction2).sqrt() + eps | |
delta = state["delta"] | |
delta.add_(grad / denom, alpha=-lr * (1 - beta1)) | |
p.clamp_(min=-scalar_max, max=scalar_max) | |
p.add_(delta) | |
class LRScheduler(object): | |
""" | |
Base-class for learning rate schedulers where the learning-rate depends on both the | |
batch and the epoch. | |
""" | |
def __init__(self, optimizer: Optimizer, verbose: bool = False): | |
# Attach optimizer | |
if not isinstance(optimizer, Optimizer): | |
raise TypeError( | |
"{} is not an Optimizer".format(type(optimizer).__name__) | |
) | |
self.optimizer = optimizer | |
self.verbose = verbose | |
for group in optimizer.param_groups: | |
group.setdefault("base_lr", group["lr"]) | |
self.base_lrs = [group["base_lr"] for group in optimizer.param_groups] | |
self.epoch = 0 | |
self.batch = 0 | |
def state_dict(self): | |
"""Returns the state of the scheduler as a :class:`dict`. | |
It contains an entry for every variable in self.__dict__ which | |
is not the optimizer. | |
""" | |
return { | |
"base_lrs": self.base_lrs, | |
"epoch": self.epoch, | |
"batch": self.batch, | |
} | |
def load_state_dict(self, state_dict): | |
"""Loads the schedulers state. | |
Args: | |
state_dict (dict): scheduler state. Should be an object returned | |
from a call to :meth:`state_dict`. | |
""" | |
self.__dict__.update(state_dict) | |
def get_last_lr(self) -> List[float]: | |
"""Return last computed learning rate by current scheduler. Will be a list of float.""" | |
return self._last_lr | |
def get_lr(self): | |
# Compute list of learning rates from self.epoch and self.batch and | |
# self.base_lrs; this must be overloaded by the user. | |
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] | |
raise NotImplementedError | |
def step_batch(self, batch: Optional[int] = None) -> None: | |
# Step the batch index, or just set it. If `batch` is specified, it | |
# must be the batch index from the start of training, i.e. summed over | |
# all epochs. | |
# You can call this in any order; if you don't provide 'batch', it should | |
# of course be called once per batch. | |
if batch is not None: | |
self.batch = batch | |
else: | |
self.batch = self.batch + 1 | |
self._set_lrs() | |
def step_epoch(self, epoch: Optional[int] = None): | |
# Step the epoch index, or just set it. If you provide the 'epoch' arg, | |
# you should call this at the start of the epoch; if you don't provide the 'epoch' | |
# arg, you should call it at the end of the epoch. | |
if epoch is not None: | |
self.epoch = epoch | |
else: | |
self.epoch = self.epoch + 1 | |
self._set_lrs() | |
def _set_lrs(self): | |
values = self.get_lr() | |
assert len(values) == len(self.optimizer.param_groups) | |
for i, data in enumerate(zip(self.optimizer.param_groups, values)): | |
param_group, lr = data | |
param_group["lr"] = lr | |
self.print_lr(self.verbose, i, lr) | |
self._last_lr = [group["lr"] for group in self.optimizer.param_groups] | |
def print_lr(self, is_verbose, group, lr): | |
"""Display the current learning rate.""" | |
if is_verbose: | |
logging.info( | |
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate" | |
f" of group {group} to {lr:.4e}." | |
) | |
class Eden(LRScheduler): | |
""" | |
Eden scheduler. | |
The basic formula (before warmup) is: | |
lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * | |
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup | |
where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches | |
and then stays constant at 1. | |
E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam | |
Args: | |
optimizer: the optimizer to change the learning rates on | |
lr_batches: the number of batches after which we start significantly | |
decreasing the learning rate, suggest 5000. | |
lr_epochs: the number of epochs after which we start significantly | |
decreasing the learning rate, suggest 6 if you plan to do e.g. | |
20 to 40 epochs, but may need smaller number if dataset is huge | |
and you will do few epochs. | |
""" | |
def __init__( | |
self, | |
optimizer: Optimizer, | |
lr_batches: Union[int, float], | |
lr_epochs: Union[int, float], | |
warmup_batches: Union[int, float] = 500.0, | |
verbose: bool = False, | |
): | |
super(Eden, self).__init__(optimizer, verbose) | |
self.lr_batches = lr_batches | |
self.lr_epochs = lr_epochs | |
self.warmup_batches = warmup_batches | |
def get_lr(self): | |
factor = ( | |
(self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2 | |
) ** -0.25 * ( | |
((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2) | |
** -0.25 | |
) | |
warmup_factor = ( | |
1.0 | |
if self.batch >= self.warmup_batches | |
else 0.5 + 0.5 * (self.batch / self.warmup_batches) | |
) | |
return [x * factor * warmup_factor for x in self.base_lrs] | |
def _test_eden(): | |
m = torch.nn.Linear(100, 100) | |
optim = ScaledAdam(m.parameters(), lr=0.03) | |
scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True) | |
for epoch in range(10): | |
scheduler.step_epoch(epoch) # sets epoch to `epoch` | |
for step in range(20): | |
x = torch.randn(200, 100).detach() | |
x.requires_grad = True | |
y = m(x) | |
dy = torch.randn(200, 100).detach() | |
f = (y * dy).sum() | |
f.backward() | |
optim.step() | |
scheduler.step_batch() | |
optim.zero_grad() | |
logging.info(f"last lr = {scheduler.get_last_lr()}") | |
logging.info(f"state dict = {scheduler.state_dict()}") | |
# This is included mostly as a baseline for ScaledAdam. | |
class Eve(Optimizer): | |
""" | |
Implements Eve algorithm. This is a modified version of AdamW with a special | |
way of setting the weight-decay / shrinkage-factor, which is designed to make the | |
rms of the parameters approach a particular target_rms (default: 0.1). This is | |
for use with networks with 'scaled' versions of modules (see scaling.py), which | |
will be close to invariant to the absolute scale on the parameter matrix. | |
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. | |
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. | |
Eve is unpublished so far. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay coefficient (default: 3e-4; | |
this value means that the weight would decay significantly after | |
about 3k minibatches. Is not multiplied by learning rate, but | |
is conditional on RMS-value of parameter being > target_rms. | |
target_rms (float, optional): target root-mean-square value of | |
parameters, if they fall below this we will stop applying weight decay. | |
.. _Adam: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _Decoupled Weight Decay Regularization: | |
https://arxiv.org/abs/1711.05101 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__( | |
self, | |
params, | |
lr=1e-3, | |
betas=(0.9, 0.98), | |
eps=1e-8, | |
weight_decay=1e-3, | |
target_rms=0.1, | |
): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError( | |
"Invalid beta parameter at index 0: {}".format(betas[0]) | |
) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError( | |
"Invalid beta parameter at index 1: {}".format(betas[1]) | |
) | |
if not 0 <= weight_decay <= 0.1: | |
raise ValueError( | |
"Invalid weight_decay value: {}".format(weight_decay) | |
) | |
if not 0 < target_rms <= 10.0: | |
raise ValueError("Invalid target_rms value: {}".format(target_rms)) | |
defaults = dict( | |
lr=lr, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
target_rms=target_rms, | |
) | |
super(Eve, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(Eve, self).__setstate__(state) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
# Perform optimization step | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError( | |
"AdamW does not support sparse gradients" | |
) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format | |
) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
beta1, beta2 = group["betas"] | |
state["step"] += 1 | |
bias_correction1 = 1 - beta1 ** state["step"] | |
bias_correction2 = 1 - beta2 ** state["step"] | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_( | |
group["eps"] | |
) | |
step_size = group["lr"] / bias_correction1 | |
target_rms = group["target_rms"] | |
weight_decay = group["weight_decay"] | |
if p.numel() > 1: | |
# avoid applying this weight-decay on "scaling factors" | |
# (which are scalar). | |
is_above_target_rms = p.norm() > ( | |
target_rms * (p.numel() ** 0.5) | |
) | |
p.mul_(1 - (weight_decay * is_above_target_rms)) | |
p.addcdiv_(exp_avg, denom, value=-step_size) | |
# if random.random() < 0.0005: | |
# step = (exp_avg / denom) * step_size | |
# logging.info( | |
# f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}" | |
# ) | |
return loss | |
def _test_scaled_adam(hidden_dim: int): | |
import timeit | |
from scaling import ScaledLinear | |
E = 100 | |
B = 4 | |
T = 2 | |
logging.info("in test_eve_cain") | |
# device = torch.device('cuda') | |
device = torch.device("cpu") | |
dtype = torch.float32 | |
fix_random_seed(42) | |
# these input_magnitudes and output_magnitudes are to test that | |
# Abel is working as we expect and is able to adjust scales of | |
# different dims differently. | |
input_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() | |
output_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() | |
for iter in [1, 0]: | |
fix_random_seed(42) | |
Linear = torch.nn.Linear if iter == 0 else ScaledLinear | |
m = torch.nn.Sequential( | |
Linear(E, hidden_dim), | |
torch.nn.PReLU(), | |
Linear(hidden_dim, hidden_dim), | |
torch.nn.PReLU(), | |
Linear(hidden_dim, E), | |
).to(device) | |
train_pairs = [ | |
( | |
100.0 | |
* torch.randn(B, T, E, device=device, dtype=dtype) | |
* input_magnitudes, | |
torch.randn(B, T, E, device=device, dtype=dtype) | |
* output_magnitudes, | |
) | |
for _ in range(20) | |
] | |
if iter == 0: | |
optim = Eve(m.parameters(), lr=0.003) | |
elif iter == 1: | |
optim = ScaledAdam(m.parameters(), lr=0.03, clipping_scale=2.0) | |
scheduler = Eden(optim, lr_batches=200, lr_epochs=5, verbose=False) | |
start = timeit.default_timer() | |
avg_loss = 0.0 | |
for epoch in range(180): | |
scheduler.step_epoch() | |
# if epoch == 100 and iter in [2,3]: | |
# optim.reset_speedup() # check it doesn't crash. | |
# if epoch == 130: | |
# opts = diagnostics.TensorDiagnosticOptions( | |
# 2 ** 22 | |
# ) # allow 4 megabytes per sub-module | |
# diagnostic = diagnostics.attach_diagnostics(m, opts) | |
for n, (x, y) in enumerate(train_pairs): | |
y_out = m(x) | |
loss = ((y_out - y) ** 2).mean() * 100.0 | |
if epoch == 0 and n == 0: | |
avg_loss = loss.item() | |
else: | |
avg_loss = 0.98 * avg_loss + 0.02 * loss.item() | |
if n == 0 and epoch % 5 == 0: | |
# norm1 = '%.2e' % (m[0].weight**2).mean().sqrt().item() | |
# norm1b = '%.2e' % (m[0].bias**2).mean().sqrt().item() | |
# norm2 = '%.2e' % (m[2].weight**2).mean().sqrt().item() | |
# norm2b = '%.2e' % (m[2].bias**2).mean().sqrt().item() | |
# scale1 = '%.2e' % (m[0].weight_scale.exp().item()) | |
# scale1b = '%.2e' % (m[0].bias_scale.exp().item()) | |
# scale2 = '%.2e' % (m[2].weight_scale.exp().item()) | |
# scale2b = '%.2e' % (m[2].bias_scale.exp().item()) | |
lr = scheduler.get_last_lr()[0] | |
logging.info( | |
f"Iter {iter}, epoch {epoch}, batch {n}, avg_loss {avg_loss:.4g}, lr={lr:.4e}" | |
) # , norms={norm1,norm1b,norm2,norm2b}") # scales={scale1,scale1b,scale2,scale2b} | |
loss.log().backward() | |
optim.step() | |
optim.zero_grad() | |
scheduler.step_batch() | |
# diagnostic.print_diagnostics() | |
stop = timeit.default_timer() | |
logging.info(f"Iter={iter}, Time taken: {stop - start}") | |
logging.info(f"last lr = {scheduler.get_last_lr()}") | |
# logging.info("state dict = ", scheduler.state_dict()) | |
# logging.info("optim state_dict = ", optim.state_dict()) | |
logging.info(f"input_magnitudes = {input_magnitudes}") | |
logging.info(f"output_magnitudes = {output_magnitudes}") | |
if __name__ == "__main__": | |
torch.set_num_threads(1) | |
torch.set_num_interop_threads(1) | |
logging.getLogger().setLevel(logging.INFO) | |
import subprocess | |
s = subprocess.check_output( | |
"git status -uno .; git log -1; git diff HEAD .", shell=True | |
) | |
logging.info(s) | |
import sys | |
if len(sys.argv) > 1: | |
hidden_dim = int(sys.argv[1]) | |
else: | |
hidden_dim = 200 | |
_test_scaled_adam(hidden_dim) | |
_test_eden() | |