Spaces:
Sleeping
Sleeping
# coding: utf-8 | |
import logging | |
import os | |
import pathlib | |
import time | |
import tempfile | |
import platform | |
import webbrowser | |
import sys | |
print(f"default encoding is {sys.getdefaultencoding()},file system encoding is {sys.getfilesystemencoding()}") | |
print(f"You are using Python version {platform.python_version()}") | |
if (sys.version_info[0] < 3 or sys.version_info[1] < 7): | |
print("The Python version is too low and may cause problems") | |
if platform.system().lower() == 'windows': | |
temp = pathlib.PosixPath | |
pathlib.PosixPath = pathlib.WindowsPath | |
else: | |
temp = pathlib.WindowsPath | |
pathlib.WindowsPath = pathlib.PosixPath | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
import py3langid as langid | |
langid.set_languages(['en', 'zh', 'ja', 'vi']) | |
import nltk | |
nltk.data.path = nltk.data.path + [os.path.join(os.getcwd(), "nltk_data")] | |
import torch | |
import torchaudio | |
import numpy as np | |
from data.tokenizer import ( | |
AudioTokenizer, | |
tokenize_audio, | |
) | |
from data.collation import get_text_token_collater | |
from models.vallex import VALLE | |
from utils.g2p import PhonemeBpeTokenizer | |
from descriptions import * | |
from macros import * | |
import gradio as gr | |
import whisper | |
from vocos import Vocos | |
import multiprocessing | |
thread_count = multiprocessing.cpu_count() | |
print("Use", thread_count, "cpu cores for computing") | |
torch.set_num_threads(thread_count) | |
torch.set_num_interop_threads(thread_count) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._set_graph_executor_optimize(False) | |
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_175.json") | |
text_collater = get_text_token_collater() | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda", 0) | |
# VALL-E-X model | |
model = VALLE( | |
N_DIM, | |
NUM_HEAD, | |
NUM_LAYERS, | |
norm_first=True, | |
add_prenet=False, | |
prefix_mode=PREFIX_MODE, | |
share_embedding=True, | |
nar_scale_factor=1.0, | |
prepend_bos=True, | |
num_quantizers=NUM_QUANTIZERS, | |
) | |
checkpoint = torch.load("./checkpoints/vallex-checkpoint.pt", map_location='cpu') | |
missing_keys, unexpected_keys = model.load_state_dict( | |
checkpoint["model"], strict=True | |
) | |
assert not missing_keys | |
model.eval() | |
# Encodec model | |
audio_tokenizer = AudioTokenizer(device) | |
# Vocos decoder | |
vocos = Vocos.from_pretrained('charactr/vocos-encodec-24khz').to(device) | |
# ASR | |
if not os.path.exists("./whisper/"): os.mkdir("./whisper/") | |
try: | |
whisper_model = whisper.load_model("medium", download_root=os.path.join(os.getcwd(), "whisper")).cpu() | |
except Exception as e: | |
logging.info(e) | |
raise Exception( | |
"\n Whisper download failed or damaged, please go to " | |
"'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt'" | |
"\n manually download model and put it to {} .".format(os.getcwd() + "/whisper")) | |
# Voice Presets | |
preset_list = os.walk("./presets/").__next__()[2] | |
preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")] | |
def inference_encoded_frames(text_tokens, text_tokens_lens, audio_prompts, enroll_x_lens, lang_pr, langs, accent, lang): | |
if lang_pr == vi_code: | |
lang_pr = zh_code | |
if lang == vi_code: | |
lang = ja_code | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
best_of=5, | |
) | |
return encoded_frames | |
def inference_samples(text_tokens, text_tokens_lens, audio_prompts, enroll_x_lens, lang_pr, langs, accent, lang): | |
encoded_frames = inference_encoded_frames(text_tokens, text_tokens_lens, audio_prompts, enroll_x_lens, lang_pr, | |
langs, | |
accent, lang) | |
# Decode with Vocos | |
frames = encoded_frames.permute(2, 0, 1) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
return samples | |
def clear_prompts(): | |
try: | |
path = tempfile.gettempdir() | |
for eachfile in os.listdir(path): | |
filename = os.path.join(path, eachfile) | |
if os.path.isfile(filename) and filename.endswith(".npz"): | |
lastmodifytime = os.stat(filename).st_mtime | |
endfiletime = time.time() - 60 | |
if endfiletime > lastmodifytime: | |
os.remove(filename) | |
except: | |
return | |
def transcribe_one(model, audio_path): | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio_path) | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# detect the spoken language | |
_, probs = model.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
lang = max(probs, key=probs.get) | |
# decode the audio | |
options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, | |
sample_len=150) | |
result = whisper.decode(model, mel, options) | |
# print the recognized text | |
print(result.text) | |
text_pr = result.text | |
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": | |
text_pr += "." | |
return lang, text_pr | |
def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content): | |
global model, text_collater, text_tokenizer, audio_tokenizer | |
clear_prompts() | |
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio | |
sr, wav_pr = audio_prompt | |
if not isinstance(wav_pr, torch.FloatTensor): | |
wav_pr = torch.FloatTensor(wav_pr) | |
if wav_pr.abs().max() > 1: | |
wav_pr /= wav_pr.abs().max() | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr[:, 0] | |
if wav_pr.ndim == 1: | |
wav_pr = wav_pr.unsqueeze(0) | |
assert wav_pr.ndim and wav_pr.size(0) == 1 | |
if transcript_content == "": | |
text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) | |
else: | |
lang_pr = langid.classify(str(transcript_content))[0] | |
lang_token = lang2token[lang_pr] | |
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() | |
# tokenize text | |
phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
text_tokens, enroll_x_lens = text_collater( | |
[ | |
phonemes | |
] | |
) | |
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" | |
# save as npz file | |
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), | |
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) | |
return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") | |
def make_prompt(name, wav, sr, save=True): | |
global whisper_model | |
whisper_model.to(device) | |
if not isinstance(wav, torch.FloatTensor): | |
wav = torch.tensor(wav) | |
if wav.abs().max() > 1: | |
wav /= wav.abs().max() | |
if wav.size(-1) == 2: | |
wav = wav.mean(-1, keepdim=False) | |
if wav.ndim == 1: | |
wav = wav.unsqueeze(0) | |
assert wav.ndim and wav.size(0) == 1 | |
torchaudio.save(f"./prompts/{name}.wav", wav, sr) | |
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") | |
lang_token = lang2token[lang] | |
text = lang_token + text + lang_token | |
with open(f"./prompts/{name}.txt", 'w', encoding='utf-8') as f: | |
f.write(text) | |
if not save: | |
os.remove(f"./prompts/{name}.wav") | |
os.remove(f"./prompts/{name}.txt") | |
whisper_model.cpu() | |
torch.cuda.empty_cache() | |
return text, lang | |
from utils.sentence_cutter import split_text_into_sentences | |
def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'): | |
""" | |
For long audio generation, two modes are available. | |
fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence. | |
sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance. | |
""" | |
mode = 'fixed-prompt' | |
global model, audio_tokenizer, text_tokenizer, text_collater | |
model.to(device) | |
if (prompt is None or prompt == "") and preset_prompt == "": | |
mode = 'sliding-window' # If no prompt is given, use sliding-window mode | |
sentences = split_text_into_sentences(text) | |
# detect language | |
if language == "auto-detect": | |
language = langid.classify(text)[0] | |
else: | |
language = token2lang[langdropdown2token[language]] | |
# if initial prompt is given, encode it | |
if prompt is not None and prompt != "": | |
# load prompt | |
prompt_data = np.load(prompt.name) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
elif preset_prompt is not None and preset_prompt != "": | |
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
else: | |
audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device) | |
text_prompts = torch.zeros([1, 0]).type(torch.int32) | |
lang_pr = language if language != 'mix' else 'en' | |
if mode == 'fixed-prompt': | |
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
for text in sentences: | |
text = text.replace("\n", "").strip(" ") | |
if text == "": | |
continue | |
lang_token = lang2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = inference_encoded_frames(text_tokens, text_tokens_lens, audio_prompts, enroll_x_lens, | |
lang_pr, langs, accent, lang) | |
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
# Decode with Vocos | |
frames = complete_tokens.permute(1, 0, 2) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
model.to('cpu') | |
print(f"Cut into {len(sentences)} sentences") | |
return 24000, samples.squeeze(0).cpu().numpy() | |
elif mode == "sliding-window": | |
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
original_audio_prompts = audio_prompts | |
original_text_prompts = text_prompts | |
for text in sentences: | |
text = text.replace("\n", "").strip(" ") | |
if text == "": | |
continue | |
lang_token = lang2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = inference_encoded_frames(text_tokens, text_tokens_lens, audio_prompts, enroll_x_lens, | |
lang_pr, langs, accent, lang) | |
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
if torch.rand(1) < 1.0: | |
audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:] | |
text_prompts = text_tokens[:, enroll_x_lens:] | |
else: | |
audio_prompts = original_audio_prompts | |
text_prompts = original_text_prompts | |
# Decode with Vocos | |
frames = complete_tokens.permute(1, 0, 2) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
model.to('cpu') | |
return 24000, samples.squeeze(0).cpu().numpy() | |
else: | |
raise ValueError(f"No such mode {mode}") | |
def main(): | |
app = gr.Blocks(title="TTS and Voice Clone") | |
with app: | |
with gr.Tab("Text to Speech"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox_4 = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value=long_text_example, elem_id=f"tts-input") | |
language_dropdown_4 = gr.Dropdown(choices=language_options, | |
value='auto-detect', | |
label='language') | |
accent_dropdown_4 = gr.Dropdown(choices=accent_options, | |
value='no-accent', | |
label='accent') | |
with gr.Column(): | |
preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') | |
prompt_file_4 = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
audio_output_4 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn_4 = gr.Button("Generate!") | |
btn_4.click(infer_long_text, | |
inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, | |
accent_dropdown_4], | |
outputs=[audio_output_4]) | |
with gr.Tab("Make prompt for voice clone"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox2 = gr.TextArea(label="Prompt name", | |
placeholder="Name your prompt here", | |
value="prompt_1", elem_id=f"prompt-name") | |
textbox_transcript2 = gr.TextArea(label="Transcript", | |
placeholder="Write transcript here. (leave empty to use whisper)", | |
value="", elem_id=f"prompt-name") | |
upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', sources='upload', interactive=True) | |
record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', sources='microphone', | |
interactive=True) | |
with gr.Column(): | |
text_output_2 = gr.Textbox(label="Message") | |
prompt_output_2 = gr.File(interactive=False) | |
btn_2 = gr.Button("Make!") | |
btn_2.click(make_npz_prompt, | |
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], | |
outputs=[text_output_2, prompt_output_2]) | |
webbrowser.open("http://127.0.0.1:7860") | |
app.launch(share=True) | |
if __name__ == "__main__": | |
formatter = ( | |
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
main() | |