YOLO-World-Image / deploy /onnx_demo.py
wondervictor's picture
update lfs
f5fdf51
raw
history blame
7.75 kB
import os
import json
import argparse
import os.path as osp
import cv2
import numpy as np
import supervision as sv
import onnxruntime as ort
from mmengine.utils import ProgressBar
try:
import torch
from torchvision.ops import nms
except Exception as e:
print(e)
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=1)
MASK_ANNOTATOR = sv.MaskAnnotator()
class LabelAnnotator(sv.LabelAnnotator):
@staticmethod
def resolve_text_background_xyxy(
center_coordinates,
text_wh,
position,
):
center_x, center_y = center_coordinates
text_w, text_h = text_wh
return center_x, center_y, center_x + text_w, center_y + text_h
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4,
text_scale=0.5,
text_thickness=1)
def parse_args():
parser = argparse.ArgumentParser('YOLO-World ONNX Demo')
parser.add_argument('onnx', help='onnx file')
parser.add_argument('image', help='image path, include image file or dir.')
parser.add_argument(
'text',
help=
'detecting texts (str or json), should be consistent with the ONNX model'
)
parser.add_argument('--output-dir',
default='./output',
help='directory to save output files')
parser.add_argument('--device',
default='cuda:0',
help='device used for inference')
parser.add_argument(
'--onnx-nms',
action='store_false',
help='whether ONNX model contains NMS and postprocessing')
args = parser.parse_args()
return args
def preprocess(image, size=(640, 640)):
h, w = image.shape[:2]
max_size = max(h, w)
scale_factor = size[0] / max_size
pad_h = (max_size - h) // 2
pad_w = (max_size - w) // 2
pad_image = np.zeros((max_size, max_size, 3), dtype=image.dtype)
pad_image[pad_h:h + pad_h, pad_w:w + pad_w] = image
image = cv2.resize(pad_image, size,
interpolation=cv2.INTER_LINEAR).astype('float32')
image /= 255.0
image = image[None]
return image, scale_factor, (pad_h, pad_w)
def visualize(image, bboxes, labels, scores, texts):
detections = sv.Detections(xyxy=bboxes, class_id=labels, confidence=scores)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
return image
def inference(ort_session,
image_path,
texts,
output_dir,
size=(640, 640),
**kwargs):
# normal export
# with NMS and postprocessing
ori_image = cv2.imread(image_path)
h, w = ori_image.shape[:2]
image, scale_factor, pad_param = preprocess(ori_image[:, :, [2, 1, 0]],
size)
input_ort = ort.OrtValue.ortvalue_from_numpy(image.transpose((0, 3, 1, 2)))
results = ort_session.run(["num_dets", "labels", "scores", "boxes"],
{"images": input_ort})
num_dets, labels, scores, bboxes = results
num_dets = num_dets[0][0]
labels = labels[0, :num_dets]
scores = scores[0, :num_dets]
bboxes = bboxes[0, :num_dets]
bboxes -= np.array(
[pad_param[1], pad_param[0], pad_param[1], pad_param[0]])
bboxes /= scale_factor
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, w)
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, h)
bboxes = bboxes.round().astype('int')
image_out = visualize(ori_image, bboxes, labels, scores, texts)
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image_out)
return image_out
def inference_with_postprocessing(ort_session,
image_path,
texts,
output_dir,
size=(640, 640),
nms_thr=0.7,
score_thr=0.3,
max_dets=300):
# export with `--without-nms`
ori_image = cv2.imread(image_path)
h, w = ori_image.shape[:2]
image, scale_factor, pad_param = preprocess(ori_image[:, :, [2, 1, 0]],
size)
input_ort = ort.OrtValue.ortvalue_from_numpy(image.transpose((0, 3, 1, 2)))
results = ort_session.run(["scores", "boxes"], {"images": input_ort})
scores, bboxes = results
# move numpy array to torch
ori_scores = torch.from_numpy(scores[0]).to('cuda:0')
ori_bboxes = torch.from_numpy(bboxes[0]).to('cuda:0')
scores_list = []
labels_list = []
bboxes_list = []
# class-specific NMS
for cls_id in range(len(texts)):
cls_scores = ori_scores[:, cls_id]
labels = torch.ones(cls_scores.shape[0], dtype=torch.long) * cls_id
keep_idxs = nms(ori_bboxes, cls_scores, iou_threshold=nms_thr)
cur_bboxes = ori_bboxes[keep_idxs]
cls_scores = cls_scores[keep_idxs]
labels = labels[keep_idxs]
scores_list.append(cls_scores)
labels_list.append(labels)
bboxes_list.append(cur_bboxes)
scores = torch.cat(scores_list, dim=0)
labels = torch.cat(labels_list, dim=0)
bboxes = torch.cat(bboxes_list, dim=0)
keep_idxs = scores > score_thr
scores = scores[keep_idxs]
labels = labels[keep_idxs]
bboxes = bboxes[keep_idxs]
if len(keep_idxs) > max_dets:
_, sorted_idx = torch.sort(scores, descending=True)
keep_idxs = sorted_idx[:max_dets]
bboxes = bboxes[keep_idxs]
scores = scores[keep_idxs]
labels = labels[keep_idxs]
# Get candidate predict info by num_dets
scores = scores.cpu().numpy()
bboxes = bboxes.cpu().numpy()
labels = labels.cpu().numpy()
bboxes -= np.array(
[pad_param[1], pad_param[0], pad_param[1], pad_param[0]])
bboxes /= scale_factor
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, w)
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, h)
bboxes = bboxes.round().astype('int')
image_out = visualize(ori_image, bboxes, labels, scores, texts)
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image_out)
return image_out
def main():
args = parse_args()
onnx_file = args.onnx
# init ONNX session
ort_session = ort.InferenceSession(
onnx_file, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
print("Init ONNX Runtime session")
output_dir = "onnx_outputs"
if not osp.exists(output_dir):
os.mkdir(output_dir)
# load images
if not osp.isfile(args.image):
images = [
osp.join(args.image, img) for img in os.listdir(args.image)
if img.endswith('.png') or img.endswith('.jpg')
]
else:
images = [args.image]
if args.text.endswith('.txt'):
with open(args.text) as f:
lines = f.readlines()
texts = [[t.rstrip('\r\n')] for t in lines]
elif args.text.endswith('.json'):
texts = json.load(open(args.text))
else:
texts = [[t.strip()] for t in args.text.split(',')]
print("Start to inference.")
progress_bar = ProgressBar(len(images))
if args.onnx_nms:
inference_func = inference
else:
inference_func = inference_with_postprocessing
for img in images:
inference_func(ort_session, img, texts, output_dir=output_dir)
progress_bar.update()
print("Finish inference")
if __name__ == "__main__":
main()