YOLO-World-Image / deploy /tflite_demo.py
wondervictor's picture
update lfs
f5fdf51
import os
import json
import argparse
import os.path as osp
import cv2
import tqdm
import torch
import numpy as np
import tensorflow as tf
import supervision as sv
from torchvision.ops import nms
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=1)
MASK_ANNOTATOR = sv.MaskAnnotator()
class LabelAnnotator(sv.LabelAnnotator):
@staticmethod
def resolve_text_background_xyxy(
center_coordinates,
text_wh,
position,
):
center_x, center_y = center_coordinates
text_w, text_h = text_wh
return center_x, center_y, center_x + text_w, center_y + text_h
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4,
text_scale=0.5,
text_thickness=1)
def parse_args():
parser = argparse.ArgumentParser('YOLO-World TFLite (INT8) Demo')
parser.add_argument('path', help='TFLite Model `.tflite`')
parser.add_argument('image', help='image path, include image file or dir.')
parser.add_argument(
'text',
help=
'detecting texts (str, txt, or json), should be consistent with the ONNX model'
)
parser.add_argument('--output-dir',
default='./output',
help='directory to save output files')
args = parser.parse_args()
return args
def preprocess(image, size=(640, 640)):
h, w = image.shape[:2]
max_size = max(h, w)
scale_factor = size[0] / max_size
pad_h = (max_size - h) // 2
pad_w = (max_size - w) // 2
pad_image = np.zeros((max_size, max_size, 3), dtype=image.dtype)
pad_image[pad_h:h + pad_h, pad_w:w + pad_w] = image
image = cv2.resize(pad_image, size,
interpolation=cv2.INTER_LINEAR).astype('float32')
image /= 255.0
image = image[None]
return image, scale_factor, (pad_h, pad_w)
def generate_anchors_per_level(feat_size, stride, offset=0.5):
h, w = feat_size
shift_x = (torch.arange(0, w) + offset) * stride
shift_y = (torch.arange(0, h) + offset) * stride
yy, xx = torch.meshgrid(shift_y, shift_x)
anchors = torch.stack([xx, yy]).reshape(2, -1).transpose(0, 1)
return anchors
def generate_anchors(feat_sizes=[(80, 80), (40, 40), (20, 20)],
strides=[8, 16, 32],
offset=0.5):
anchors = [
generate_anchors_per_level(fs, s, offset)
for fs, s in zip(feat_sizes, strides)
]
anchors = torch.cat(anchors)
return anchors
def simple_bbox_decode(points, pred_bboxes, stride):
pred_bboxes = pred_bboxes * stride[None, :, None]
x1 = points[..., 0] - pred_bboxes[..., 0]
y1 = points[..., 1] - pred_bboxes[..., 1]
x2 = points[..., 0] + pred_bboxes[..., 2]
y2 = points[..., 1] + pred_bboxes[..., 3]
bboxes = torch.stack([x1, y1, x2, y2], -1)
return bboxes
def visualize(image, bboxes, labels, scores, texts):
detections = sv.Detections(xyxy=bboxes, class_id=labels, confidence=scores)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
return image
def inference_per_sample(interp,
image_path,
texts,
priors,
strides,
output_dir,
size=(640, 640),
vis=False,
score_thr=0.05,
nms_thr=0.3,
max_dets=300):
# input / output details from TFLite
input_details = interp.get_input_details()
output_details = interp.get_output_details()
# load image from path
ori_image = cv2.imread(image_path)
h, w = ori_image.shape[:2]
image, scale_factor, pad_param = preprocess(ori_image[:, :, [2, 1, 0]],
size)
# inference
interp.set_tensor(input_details[0]['index'], image)
interp.invoke()
scores = interp.get_tensor(output_details[1]['index'])
bboxes = interp.get_tensor(output_details[0]['index'])
# can be converted to numpy for other devices
# using torch here is only for references.
ori_scores = torch.from_numpy(scores[0])
ori_bboxes = torch.from_numpy(bboxes)
# decode bbox cordinates with priors
decoded_bboxes = simple_bbox_decode(priors, ori_bboxes, strides)[0]
scores_list = []
labels_list = []
bboxes_list = []
for cls_id in range(len(texts)):
cls_scores = ori_scores[:, cls_id]
labels = torch.ones(cls_scores.shape[0], dtype=torch.long) * cls_id
keep_idxs = nms(decoded_bboxes, cls_scores, iou_threshold=0.5)
cur_bboxes = decoded_bboxes[keep_idxs]
cls_scores = cls_scores[keep_idxs]
labels = labels[keep_idxs]
scores_list.append(cls_scores)
labels_list.append(labels)
bboxes_list.append(cur_bboxes)
scores = torch.cat(scores_list, dim=0)
labels = torch.cat(labels_list, dim=0)
bboxes = torch.cat(bboxes_list, dim=0)
keep_idxs = scores > score_thr
scores = scores[keep_idxs]
labels = labels[keep_idxs]
bboxes = bboxes[keep_idxs]
# only for visualization, add an extra NMS
keep_idxs = nms(bboxes, scores, iou_threshold=nms_thr)
num_dets = min(len(keep_idxs), max_dets)
bboxes = bboxes[keep_idxs].unsqueeze(0)
scores = scores[keep_idxs].unsqueeze(0)
labels = labels[keep_idxs].unsqueeze(0)
scores = scores[0, :num_dets].numpy()
bboxes = bboxes[0, :num_dets].numpy()
labels = labels[0, :num_dets].numpy()
bboxes -= np.array(
[pad_param[1], pad_param[0], pad_param[1], pad_param[0]])
bboxes /= scale_factor
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, w)
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, h)
if vis:
image_out = visualize(ori_image, bboxes, labels, scores, texts)
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image_out)
print(f"detecting {num_dets} objects.")
return image_out, ori_scores, ori_bboxes[0]
else:
return bboxes, labels, scores
def main():
args = parse_args()
tflite_file = args.tflite
# init ONNX session
interpreter = tf.lite.Interpreter(model_path=tflite_file,
experimental_preserve_all_tensors=True)
interpreter.allocate_tensors()
print("Init TFLite Interpter")
output_dir = "onnx_outputs"
if not osp.exists(output_dir):
os.mkdir(output_dir)
# load images
if not osp.isfile(args.image):
images = [
osp.join(args.image, img) for img in os.listdir(args.image)
if img.endswith('.png') or img.endswith('.jpg')
]
else:
images = [args.image]
if args.text.endswith('.txt'):
with open(args.text) as f:
lines = f.readlines()
texts = [[t.rstrip('\r\n')] for t in lines]
elif args.text.endswith('.json'):
texts = json.load(open(args.text))
else:
texts = [[t.strip()] for t in args.text.split(',')]
size = (640, 640)
strides = [8, 16, 32]
# prepare anchors, since TFLite models does not contain anchors, due to INT8 quantization.
featmap_sizes = [(size[0] // s, size[1] // s) for s in strides]
flatten_priors = generate_anchors(featmap_sizes, strides=strides)
mlvl_strides = [
flatten_priors.new_full((featmap_size[0] * featmap_size[1] * 1, ),
stride)
for featmap_size, stride in zip(featmap_sizes, strides)
]
flatten_strides = torch.cat(mlvl_strides)
print("Start to inference.")
for img in tqdm.tqdm(images):
inference_per_sample(interpreter,
img,
texts,
flatten_priors[None],
flatten_strides,
output_dir=output_dir,
vis=True,
score_thr=0.3,
nms_thr=0.5)
print("Finish inference")
if __name__ == "__main__":
main()