xeniabuerli commited on
Commit
6ce5d60
·
verified ·
1 Parent(s): 7297d4c

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ model_path = "pokemon-model_transferlearning.keras"
7
+ model = tf.keras.models.load_model(model_path)
8
+
9
+ # Define the core prediction function
10
+ def predict_pokemon(image):
11
+ # Preprocess image
12
+ print(type(image))
13
+ image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
14
+ image = image.resize((150, 150)) # Resize the image to 150x150
15
+ image = np.array(image)
16
+ image = np.expand_dims(image, axis=0) # Expand dimensions to create batch size of 1
17
+
18
+ # Predict
19
+ prediction = model.predict(image)
20
+
21
+ # Assuming the model's output layer uses softmax activation and there are three outputs
22
+ prediction = prediction.flatten()
23
+ predictions = np.round(prediction, 2) # Flatten the predictions and round them
24
+
25
+ # Separate the probabilities for each class
26
+ p_clefairy = predictions[0] # Probability for Clefairy
27
+ p_snorlax = predictions[1] # Probability for Snorlax
28
+ p_squirtle = predictions[2] # Probability for Squirtle
29
+
30
+ return {
31
+ 'clefairy': p_clefairy,
32
+ 'snorlax': p_snorlax,
33
+ 'squirtle': p_squirtle
34
+ }
35
+
36
+ # Create the Gradio interface
37
+ input_image = gr.Image()
38
+ iface = gr.Interface(
39
+ fn=predict_pokemon,
40
+ inputs=input_image,
41
+ outputs=gr.Label(),
42
+ examples=[r"images\squirtle\0.png", r"images\squirtle\00000003.png", r"images\snorlax\00000003.png",
43
+ r"images\squirtle\4.png", r"images\snorlax\00000017.png",
44
+ r"images\snorlax\4eb284a359474f0cb43ffe82d03abbe9.jpg",
45
+ r"images\clefairy\5fb558d9c96e4e469100636eb6c8627e.jpg",
46
+ r"images\clefairy\00000024.png", r"images\clefairy\00000103.jpg"],
47
+ description="A simple mlp classification model for image classification using the mnist dataset.")
48
+ iface.launch()