Hjgugugjhuhjggg
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from llama_cpp_agent import Llama
|
3 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
+
import re
|
5 |
+
import httpx
|
6 |
+
import asyncio
|
7 |
+
import gradio as gr
|
8 |
+
import os
|
9 |
+
import gptcache
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from fastapi import FastAPI, Request
|
12 |
+
from fastapi.responses import JSONResponse
|
13 |
+
import uvicorn
|
14 |
+
from threading import Thread
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
19 |
+
|
20 |
+
global_data = {
|
21 |
+
'models': {},
|
22 |
+
'tokens': {
|
23 |
+
'eos': 'eos_token',
|
24 |
+
'pad': 'pad_token',
|
25 |
+
'padding': 'padding_token',
|
26 |
+
'unk': 'unk_token',
|
27 |
+
'bos': 'bos_token',
|
28 |
+
'sep': 'sep_token',
|
29 |
+
'cls': 'cls_token',
|
30 |
+
'mask': 'mask_token'
|
31 |
+
},
|
32 |
+
'model_metadata': {},
|
33 |
+
'max_tokens': 256,
|
34 |
+
'tokenizers': {},
|
35 |
+
'model_params': {},
|
36 |
+
'model_size': {},
|
37 |
+
'model_ftype': {},
|
38 |
+
'n_ctx_train': {},
|
39 |
+
'n_embd': {},
|
40 |
+
'n_layer': {},
|
41 |
+
'n_head': {},
|
42 |
+
'n_head_kv': {},
|
43 |
+
'n_rot': {},
|
44 |
+
'n_swa': {},
|
45 |
+
'n_embd_head_k': {},
|
46 |
+
'n_embd_head_v': {},
|
47 |
+
'n_gqa': {},
|
48 |
+
'n_embd_k_gqa': {},
|
49 |
+
'n_embd_v_gqa': {},
|
50 |
+
'f_norm_eps': {},
|
51 |
+
'f_norm_rms_eps': {},
|
52 |
+
'f_clamp_kqv': {},
|
53 |
+
'f_max_alibi_bias': {},
|
54 |
+
'f_logit_scale': {},
|
55 |
+
'n_ff': {},
|
56 |
+
'n_expert': {},
|
57 |
+
'n_expert_used': {},
|
58 |
+
'causal_attn': {},
|
59 |
+
'pooling_type': {},
|
60 |
+
'rope_type': {},
|
61 |
+
'rope_scaling': {},
|
62 |
+
'freq_base_train': {},
|
63 |
+
'freq_scale_train': {},
|
64 |
+
'n_ctx_orig_yarn': {},
|
65 |
+
'rope_finetuned': {},
|
66 |
+
'ssm_d_conv': {},
|
67 |
+
'ssm_d_inner': {},
|
68 |
+
'ssm_d_state': {},
|
69 |
+
'ssm_dt_rank': {},
|
70 |
+
'ssm_dt_b_c_rms': {},
|
71 |
+
'vocab_type': {},
|
72 |
+
'model_type': {}
|
73 |
+
}
|
74 |
+
|
75 |
+
model_configs = [
|
76 |
+
{"repo_id": "Hjgugugjhuhjggg/testing_semifinal-Q2_K-GGUF", "filename": "testing_semifinal-q2_k.gguf", "name": "testing"}
|
77 |
+
]
|
78 |
+
|
79 |
+
class ModelManager:
|
80 |
+
def __init__(self):
|
81 |
+
self.models = {}
|
82 |
+
|
83 |
+
def load_model(self, model_config):
|
84 |
+
if model_config['name'] not in self.models:
|
85 |
+
try:
|
86 |
+
self.models[model_config['name']] = Llama.from_pretrained(
|
87 |
+
repo_id=model_config['repo_id'],
|
88 |
+
filename=model_config['filename'],
|
89 |
+
use_auth_token=HUGGINGFACE_TOKEN,
|
90 |
+
n_threads=8,
|
91 |
+
use_gpu=False
|
92 |
+
)
|
93 |
+
except Exception as e:
|
94 |
+
pass
|
95 |
+
|
96 |
+
def load_all_models(self):
|
97 |
+
with ThreadPoolExecutor() as executor:
|
98 |
+
for config in model_configs:
|
99 |
+
executor.submit(self.load_model, config)
|
100 |
+
return self.models
|
101 |
+
|
102 |
+
model_manager = ModelManager()
|
103 |
+
global_data['models'] = model_manager.load_all_models()
|
104 |
+
|
105 |
+
class ChatRequest(BaseModel):
|
106 |
+
message: str
|
107 |
+
|
108 |
+
def normalize_input(input_text):
|
109 |
+
return input_text.strip()
|
110 |
+
|
111 |
+
def remove_duplicates(text):
|
112 |
+
lines = text.split('\n')
|
113 |
+
unique_lines = []
|
114 |
+
seen_lines = set()
|
115 |
+
for line in lines:
|
116 |
+
if line not in seen_lines:
|
117 |
+
unique_lines.append(line)
|
118 |
+
seen_lines.add(line)
|
119 |
+
return '\n'.join(unique_lines)
|
120 |
+
|
121 |
+
def cache_response(func):
|
122 |
+
def wrapper(*args, **kwargs):
|
123 |
+
cache_key = f"{args}-{kwargs}"
|
124 |
+
if gptcache.get(cache_key):
|
125 |
+
return gptcache.get(cache_key)
|
126 |
+
response = func(*args, **kwargs)
|
127 |
+
gptcache.set(cache_key, response)
|
128 |
+
return response
|
129 |
+
return wrapper
|
130 |
+
|
131 |
+
@cache_response
|
132 |
+
def generate_model_response(model, inputs):
|
133 |
+
try:
|
134 |
+
response = model(inputs)
|
135 |
+
return remove_duplicates(response['choices'][0]['text'])
|
136 |
+
except Exception as e:
|
137 |
+
return ""
|
138 |
+
|
139 |
+
def remove_repetitive_responses(responses):
|
140 |
+
unique_responses = {}
|
141 |
+
for response in responses:
|
142 |
+
if response['model'] not in unique_responses:
|
143 |
+
unique_responses[response['model']] = response['response']
|
144 |
+
return unique_responses
|
145 |
+
|
146 |
+
async def process_message(message):
|
147 |
+
inputs = normalize_input(message)
|
148 |
+
with ThreadPoolExecutor() as executor:
|
149 |
+
futures = [
|
150 |
+
executor.submit(generate_model_response, model, inputs)
|
151 |
+
for model in global_data['models'].values()
|
152 |
+
]
|
153 |
+
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(global_data['models'].keys(), as_completed(futures))]
|
154 |
+
unique_responses = remove_repetitive_responses(responses)
|
155 |
+
formatted_response = ""
|
156 |
+
for model, response in unique_responses.items():
|
157 |
+
formatted_response += f"**{model}:**\n{response}\n\n"
|
158 |
+
return formatted_response
|
159 |
+
|
160 |
+
app = FastAPI()
|
161 |
+
|
162 |
+
@app.post("/generate")
|
163 |
+
async def generate(request: ChatRequest):
|
164 |
+
response = await process_message(request.message)
|
165 |
+
return JSONResponse(content={"response": response})
|
166 |
+
|
167 |
+
def run_uvicorn():
|
168 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
169 |
+
|
170 |
+
iface = gr.Interface(
|
171 |
+
fn=process_message,
|
172 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
173 |
+
outputs=gr.Markdown(),
|
174 |
+
title="Multi-Model LLM API (CPU Optimized)",
|
175 |
+
description="Enter a message and get responses from multiple LLMs using CPU."
|
176 |
+
)
|
177 |
+
|
178 |
+
def run_gradio():
|
179 |
+
iface.launch(server_port=7860, prevent_thread_lock=True)
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
Thread(target=run_uvicorn).start()
|
183 |
+
Thread(target=run_gradio).start()
|