File size: 19,725 Bytes
2fe64fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0309c8e
0d9c5f5
0309c8e
 
 
 
2fe64fd
 
 
 
 
0309c8e
0d9c5f5
0309c8e
 
 
 
2fe64fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import os, sys
import random
import warnings
import copy
os.system("python -m pip install -e asam")
os.system("python -m pip install -e GroundingDINO")
# os.system("python -m pip uninstall gradio")
os.system("python -m pip install gradio==3.38.0")
os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "asam"))
warnings.filterwarnings("ignore")

import gradio as gr
import argparse

import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
from scipy import ndimage

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import build_sam_vit_b, SamPredictor 
import numpy as np


# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration


def generate_caption(processor, blip_model, raw_image):
    # unconditional image captioning
    inputs = processor(raw_image, return_tensors="pt").to(
        device) #fp 16
    out = blip_model.generate(**inputs)
    caption = processor.decode(out[0], skip_special_tokens=True)
    return caption


def transform_image(image_pil):

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def load_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    load_res = model.load_state_dict(
        clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model


def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."

    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    scores = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(
            logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(
                pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)
        scores.append(logit.max().item())

    return boxes_filt, torch.Tensor(scores), pred_phrases


def draw_mask(mask, draw, random_color=False):
    if random_color:
        color = (random.randint(0, 255), random.randint(
            0, 255), random.randint(0, 255), 153)
    else:
        color = (30, 144, 255, 153)

    nonzero_coords = np.transpose(np.nonzero(mask))

    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)


def draw_box(box, draw, label):
    # random color
    color = tuple(np.random.randint(0, 255, size=3).tolist())

    draw.rectangle(((box[0], box[1]), (box[2], box[3])),
                   outline=color,  width=2)

    if label:
        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((box[0], box[1]), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (box[0], box[1], w + box[0], box[1] + h)
        draw.rectangle(bbox, fill=color)
        draw.text((box[0], box[1]), str(label), fill="white")

        draw.text((box[0], box[1]), label)

def draw_point(point, draw, r=10):
    show_point = []
    for p in point:
        x,y = p
        draw.ellipse((x-r, y-r, x+r, y+r), fill='green')


config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = 'sam_vit_b_01ec64.pth'
asam_checkpoint = 'asam_vit_b.pth'
output_dir = "outputs"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
blip_processor = None
blip_model = None
groundingdino_model = None
sam_predictor = None


def run_grounded_sam(input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold):    
    print(text_prompt, type(text_prompt))
    global blip_processor, blip_model, groundingdino_model, sam_predictor

    # make dir
    os.makedirs(output_dir, exist_ok=True)
    # load image
    scribble = np.array(input_image["mask"])
    image_pil = input_image["image"].convert("RGB")
    transformed_image = transform_image(image_pil)
    print('img sum:' ,torch.sum(transformed_image).to(torch.int).item())
    
    if groundingdino_model is None:
        groundingdino_model = load_model(
            config_file, ckpt_filenmae, device=device)

    if task_type == 'automatic':
        # generate caption and tags
        # use Tag2Text can generate better captions
        # https://huggingface.co/spaces/xinyu1205/Tag2Text
        # but there are some bugs...
        blip_processor = blip_processor or BlipProcessor.from_pretrained(
            "Salesforce/blip-image-captioning-large")
        blip_model = blip_model or BlipForConditionalGeneration.from_pretrained(
            "Salesforce/blip-image-captioning-large").to(device) #torch_dtype=torch.float16
        text_prompt = generate_caption(blip_processor, blip_model, image_pil)
        print(f"Caption: {text_prompt}")

    # run grounding dino model
    boxes_filt, scores, pred_phrases = get_grounding_output(
        groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
    )

    size = image_pil.size

    # process boxes
    H, W = size[1], size[0]
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]

    boxes_filt = boxes_filt.cpu()

    # nms
    print(f"Before NMS: {boxes_filt.shape[0]} boxes")
    nms_idx = torchvision.ops.nms(
        boxes_filt, scores, iou_threshold).numpy().tolist()
    boxes_filt = boxes_filt[nms_idx]
    pred_phrases = [pred_phrases[idx] for idx in nms_idx]
    print(f"After NMS: {boxes_filt.shape[0]} boxes")

    if sam_predictor is None:
        # initialize SAM
        assert sam_checkpoint, 'sam_checkpoint is not found!'
        sam = build_sam_vit_b(checkpoint=sam_checkpoint)
        sam.to(device=device)
        sam_predictor = SamPredictor(sam)

    image = np.array(image_pil)
    sam_predictor.set_image(image)

    if task_type == 'automatic':
        # use NMS to handle overlapped boxes
        print(f"Revise caption with number: {text_prompt}")
    
    if task_type == 'default_box' or task_type == 'automatic' or task_type == 'scribble_box':
        if task_type == 'default_box':
            id = torch.sum(transformed_image).to(torch.int).item()
            if id == -1683627: #example 1 *
                x_min, y_min, x_max, y_max = 204, 213, 813, 1023
            elif id == 1137390: #example 2 *
                x_min, y_min, x_max, y_max = 125, 168, 842, 904
            elif id == 1145309: #example 3 *
                x_min, y_min, x_max, y_max = 0, 486, 992, 899
            elif id == 1091779: #example 4 *
                x_min, y_min, x_max, y_max = 2, 73, 981, 968
            elif id == -1335352: #example 5 *
                x_min, y_min, x_max, y_max = 201, 195, 811, 1023
            elif id == -1479645: #example 6
                x_min, y_min, x_max, y_max = 428, 0, 992, 799
            elif id == -544197: #example 7
                x_min, y_min, x_max, y_max = 106, 419, 312, 783
            elif id == -23873: #example 8
                x_min, y_min, x_max, y_max = 250, 25, 774, 803
            elif id == -1572157: #example 9 *
                x_min, y_min, x_max, y_max = 15, 88, 1006, 977
            else:
                print("not defined")
                raise NotImplementedError
            bbox = np.array([x_min, y_min, x_max, y_max])
            bbox = torch.tensor(bbox).unsqueeze(0)
            transformed_boxes = sam_predictor.transform.apply_boxes_torch(bbox, image.shape[:2]).to(device)
        elif task_type == 'scribble_box':
            scribble = scribble.transpose(2, 1, 0)[0]
            labeled_array, num_features = ndimage.label(scribble >= 255)
            centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
            centers = np.array(centers)
            ### (x1, y1, x2, y2)
            x_min = centers[:, 0].min()
            x_max = centers[:, 0].max()
            y_min = centers[:, 1].min()
            y_max = centers[:, 1].max()
            bbox = np.array([x_min, y_min, x_max, y_max])
            bbox = torch.tensor(bbox).unsqueeze(0)
            transformed_boxes = sam_predictor.transform.apply_boxes_torch(bbox, image.shape[:2]).to(device)
        else:
            transformed_boxes = sam_predictor.transform.apply_boxes_torch(
                boxes_filt, image.shape[:2]).to(device)
        
        
        a_image_pil = copy.deepcopy(image_pil)
        # sam`s output
        sam_predictor.model.load_state_dict(torch.load(sam_checkpoint,map_location='cpu'))
        masks, _, _ = sam_predictor.predict_torch(
            point_coords=None,
            point_labels=None,
            boxes=transformed_boxes,
            multimask_output=False,
        )
        print(torch.sum(masks), masks.device)
        # masks: [1, 1, 512, 512]
        mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
        mask_draw = ImageDraw.Draw(mask_image)
        for mask in masks:
            draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
        image_draw = ImageDraw.Draw(image_pil)

        if task_type == 'scribble_box' or task_type == 'default_box':
            for box in bbox:
                draw_box(box, image_draw, None)
        else:
            for box, label in zip(boxes_filt, pred_phrases):
                draw_box(box, image_draw, label)

        if task_type == 'automatic':
            image_draw.text((10, 10), text_prompt, fill='black')

        image_pil = image_pil.convert('RGBA')
        image_pil.alpha_composite(mask_image)
        
        
        # asam`s output        
        total_weights = 0
        for param in sam_predictor.model.parameters():
            total_weights += param.data.sum()

        print("Total sum of model weights:", total_weights.item())
        
        sam_predictor.model.load_state_dict(torch.load(asam_checkpoint,map_location='cpu'))
        
        total_weights = 0
        for param in sam_predictor.model.parameters():
            total_weights += param.data.sum()

        print("Total sum of model weights:", total_weights.item())
        
        a_masks, _, _ = sam_predictor.predict_torch(
            point_coords=None,
            point_labels=None,
            boxes=transformed_boxes,
            multimask_output=False,
        )
        print(torch.sum(a_masks))
        
        # masks: [1, 1, 512, 512]
        a_mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
        a_mask_draw = ImageDraw.Draw(a_mask_image)
        for a_mask in a_masks:
            draw_mask(a_mask[0].cpu().numpy(), a_mask_draw, random_color=True)
        a_image_draw = ImageDraw.Draw(a_image_pil)

        if task_type == 'scribble_box' or task_type == 'default_box':
            for box in bbox:
                draw_box(box, a_image_draw, None)
        else:
            for box, label in zip(boxes_filt, pred_phrases):
                draw_box(box, a_image_draw, label)

        if task_type == 'automatic':
            a_image_draw.text((10, 10), text_prompt, fill='black')

        a_image_pil = a_image_pil.convert('RGBA')
        a_image_pil.alpha_composite(a_mask_image)

        return [[image_pil, mask_image],[a_image_pil, a_mask_image]]

    elif task_type == 'scribble_point':

        scribble = scribble.transpose(2, 1, 0)[0]
        labeled_array, num_features = ndimage.label(scribble >= 255)
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)
        point_coords = centers
        point_labels = np.ones(point_coords.shape[0])

        a_image_pil = copy.deepcopy(image_pil)
        
        # sam`s output
        sam_predictor.model.load_state_dict(torch.load(sam_checkpoint,map_location='cpu'))
        masks, _, _ = sam_predictor.predict(
            point_coords=point_coords,
            point_labels=point_labels,
            box=None,
            multimask_output=False,
        )

        mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
        mask_draw = ImageDraw.Draw(mask_image)
        for mask in masks:
            draw_mask(mask, mask_draw, random_color=True)
        image_draw = ImageDraw.Draw(image_pil)

        draw_point(point_coords,image_draw)

        image_pil = image_pil.convert('RGBA')
        image_pil.alpha_composite(mask_image)
    
    
        # asam`s output
        sam_predictor.model.load_state_dict(torch.load(asam_checkpoint,map_location='cpu'))
        a_masks, _, _ = sam_predictor.predict(
            point_coords=point_coords,
            point_labels=point_labels,
            box=None,
            multimask_output=False,
        )

        a_mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
        a_mask_draw = ImageDraw.Draw(a_mask_image)
        for a_mask in a_masks:
            draw_mask(a_mask, a_mask_draw, random_color=True)
        
        a_image_draw = ImageDraw.Draw(a_image_pil)
        draw_point(point_coords,a_image_draw)

        a_image_pil = a_image_pil.convert('RGBA')
        a_image_pil.alpha_composite(a_mask_image)
        
        return [[image_pil, mask_image],[a_image_pil, a_mask_image]]

    else:
        print("task_type:{} error!".format(task_type))


if __name__ == "__main__":
    parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true",
                        help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument('--no-gradio-queue', action="store_true",
                        help='path to the SAM checkpoint')
    args = parser.parse_args()

    print(args)

    block = gr.Blocks()
    if not args.no_gradio_queue:
        block = block.queue()

    with block:
        gr.Markdown(
        """
        # ASAM
  
        Welcome to the ASAM demo <br/> 
        You may select different prompt types to get the output mask of target instance.
        
        ## Usage
        You may check the instruction below, or check our github page about more details.
        
        ## Mode
        You may select an example image or upload your image to start, we support 4 prompt types:
        
        **default_box**: According to the mask label, automaticly generate the default box prompt, only used for examples.
        
        **automatic**: Automaticly generate text prompt and the corresponding box input with BLIP and Grounding-DINO.

        **scribble_point**: Click an point on the target instance.

        **scribble_box**: Click on two points, the top-left point and the bottom-right point to represent a bounding box of the target instance.
        
        """)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    source='upload', type="pil", value="example9.jpg", tool="sketch",brush_radius=20)
                task_type = gr.Dropdown(
                    ["default_box","automatic", "scribble_point", "scribble_box"], value="default_box", label="task_type")
                text_prompt = gr.Textbox(label="Text Prompt", placeholder="bench .", visible=False)
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
                    )

            with gr.Column():
                with gr.Row(equal_height=True):
                    gr.Image(source='upload', value="meta&sam.png",tool="label", show_download_button=False, min_width=0, height=50, width=100,container=False, style="width: 0.5px; height: 0.5px; margin-right: 0px;")
                    # gr.Markdown(
                    #     """
                    #     # SAM-Output 
                    #     """)
                
                gallery1 = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style(preview=True, grid=2, object_fit="scale-down")
                        
                with gr.Row(equal_height=True):
                    gr.Image(source='upload', value="vivo&asam.png",tool="label", show_download_button=False, min_width=0, height=50, width=100,container=False, style="width: 0.5px; height: 0.5px; margin-right: 0px;")
                    # gr.Markdown(
                    #     """
                    #     # SAM-Output 
                    #     """)
                gallery2 = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style(preview=True, grid=2, object_fit="scale-down")
                
        with gr.Row():
            with gr.Column():
                gr.Examples(["example1.jpg"], inputs=input_image)
            with gr.Column():            
                gr.Examples(["example2.jpg"], inputs=input_image)
            with gr.Column():
                 gr.Examples(["example3.jpg"], inputs=input_image)
            with gr.Column():
                gr.Examples(["example4.jpg"], inputs=input_image)
            with gr.Column():
                gr.Examples(["example5.jpg"], inputs=input_image)
            with gr.Column():            
                gr.Examples(["example6.jpg"], inputs=input_image)
            with gr.Column():
                gr.Examples(["example7.jpg"], inputs=input_image)
            with gr.Column():
                gr.Examples(["example8.jpg"], inputs=input_image)
            with gr.Column():
                gr.Examples(["example9.jpg"], inputs=input_image)            
        run_button.click(fn=run_grounded_sam, inputs=[
            input_image, text_prompt, task_type, box_threshold, text_threshold, iou_threshold], outputs=[gallery1,gallery2])
    
    block.launch(debug=args.debug, share=args.share, show_error=True)