Spaces:
Sleeping
Sleeping
Create app.py
Browse filesStart the app.py. WIP.
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import timm
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
from torch import nn
|
10 |
+
import smp
|
11 |
+
|
12 |
+
# The accompanying inference app
|
13 |
+
|
14 |
+
PATHS = ['1.tiff', '2.tiff']
|
15 |
+
|
16 |
+
|
17 |
+
NUM_CLASSES = len(CLASSES)
|
18 |
+
|
19 |
+
IDS_TO_CLASSES_DICT = dict(zip(list(range(NUM_CLASSES)), CLASSES))
|
20 |
+
|
21 |
+
|
22 |
+
MODEL_NAME = "se_resne"
|
23 |
+
MODEL_PATH = "model.ckpt"
|
24 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
25 |
+
TRANSFORM = transforms.Compose([transforms.ToTensor(),
|
26 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
BACKBONE = ""
|
31 |
+
IN_CHANNELS = ""
|
32 |
+
CLASSES = ""
|
33 |
+
# TODO: path to weights?
|
34 |
+
WEIGHTS = ""
|
35 |
+
|
36 |
+
class VesuviusModel(nn.Module):
|
37 |
+
def __init__(self, weight=None):
|
38 |
+
super().__init__()
|
39 |
+
self.cfg = cfg
|
40 |
+
|
41 |
+
self.encoder = smp.Unet(
|
42 |
+
encoder_name=BACKBONE,
|
43 |
+
encoder_weights=WEIGHTS,
|
44 |
+
in_channels=IN_CHANNELS,
|
45 |
+
classes=CLASSES,
|
46 |
+
activation=None,
|
47 |
+
)
|
48 |
+
|
49 |
+
def forward(self, image):
|
50 |
+
output = self.encoder(image)
|
51 |
+
output = output.squeeze(-1)
|
52 |
+
return output
|
53 |
+
|
54 |
+
|
55 |
+
def load_weights_into_model(model_name: str, model_path: str) -> nn.Module:
|
56 |
+
model = VesuviusModel(model_name)
|
57 |
+
state_dict = torch.load(model_path, map_location=DEVICE)["state_dict"]
|
58 |
+
model.load_state_dict(state_dict)
|
59 |
+
return model
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
model = load_weights_into_model(MODEL_NAME, MODEL_PATH)
|
69 |
+
model.to(DEVICE)
|
70 |
+
model.eval()
|
71 |
+
|
72 |
+
img_path = st.selectbox('Select an image to segment', PATHS)
|
73 |
+
|
74 |
+
st.write('You have selected:', img_path)
|
75 |
+
img = Image.open(img_path)
|
76 |
+
|
77 |
+
st.image(img, caption='Selected image to segment')
|
78 |
+
|
79 |
+
np_img = np.array(img)
|
80 |
+
|
81 |
+
input_batch = TRANSFORM(np_img[:, :, :3]).unsqueeze(0).to(DEVICE)
|
82 |
+
|
83 |
+
with st.spinner("Segmenting the image in progress..."):
|
84 |
+
|
85 |
+
|
86 |
+
with torch.no_grad():
|
87 |
+
# TODO: Finish...
|
88 |
+
prediction = model(input_batch).cpu()
|
89 |
+
print(prediction)
|
90 |
+
|