Spaces:
Running
Running
File size: 6,839 Bytes
0dd5c06 cf196b3 73e8b86 cf196b3 73e8b86 cf196b3 67812d2 73e8b86 cf196b3 73e8b86 1371afd 73e8b86 71d0339 cf196b3 47db0c3 cf196b3 b6833d5 cf196b3 47db0c3 cf196b3 47db0c3 cf196b3 47db0c3 cf196b3 47db0c3 cf196b3 73e8b86 c73f9e9 6b89337 73e8b86 6b89337 c73f9e9 73e8b86 6b89337 73e8b86 6b89337 73e8b86 6b89337 73e8b86 c73f9e9 73e8b86 6b89337 73e8b86 44ad98f 73e8b86 c73f9e9 6b89337 c73f9e9 73e8b86 c73f9e9 73e8b86 2e9ad55 6b89337 73e8b86 300b938 cf196b3 871741c cf196b3 871741c cf196b3 6b89337 73e8b86 6b89337 73e8b86 71d0339 cf196b3 71d0339 73e8b86 6b89337 73e8b86 6b89337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
"""
It provides a platform for comparing the responses of two LLMs.
"""
import enum
import json
from random import sample
from uuid import uuid4
from fastchat.serve import gradio_web_server
from fastchat.serve.gradio_web_server import bot_response
import firebase_admin
from firebase_admin import firestore
import gradio as gr
db_app = firebase_admin.initialize_app()
db = firestore.client()
# TODO(#1): Add more models.
SUPPORTED_MODELS = ["gpt-4", "gpt-4-turbo", "gpt-3.5-turbo", "gemini-pro"]
# TODO(#4): Add more languages.
SUPPORTED_TRANSLATION_LANGUAGES = ["Korean", "English"]
class ResponseType(enum.Enum):
SUMMARIZE = "Summarize"
TRANSLATE = "Translate"
class VoteOptions(enum.Enum):
MODEL_A = "Model A is better"
MODEL_B = "Model B is better"
TIE = "Tie"
def vote(state_a, state_b, vote_button, res_type, source_lang, target_lang):
doc_id = uuid4().hex
winner = VoteOptions(vote_button).name.lower()
# The 'messages' field in the state is an array of arrays, which is
# not supported by Firestore. Therefore, we convert it to a JSON string.
model_a_conv = json.dumps(state_a.dict())
model_b_conv = json.dumps(state_b.dict())
if res_type == ResponseType.SUMMARIZE.value:
doc_ref = db.collection("arena-summarizations").document(doc_id)
doc_ref.set({
"id": doc_id,
"model_a": state_a.model_name,
"model_b": state_b.model_name,
"model_a_conv": model_a_conv,
"model_b_conv": model_b_conv,
"winner": winner,
"timestamp": firestore.SERVER_TIMESTAMP
})
return
if res_type == ResponseType.TRANSLATE.value:
doc_ref = db.collection("arena-translations").document(doc_id)
doc_ref.set({
"id": doc_id,
"model_a": state_a.model_name,
"model_b": state_b.model_name,
"model_a_conv": model_a_conv,
"model_b_conv": model_b_conv,
"source_language": source_lang.lower(),
"target_language": target_lang.lower(),
"winner": winner,
"timestamp": firestore.SERVER_TIMESTAMP
})
def user(user_prompt):
model_pair = sample(SUPPORTED_MODELS, 2)
new_state_a = gradio_web_server.State(model_pair[0])
new_state_b = gradio_web_server.State(model_pair[1])
for state in [new_state_a, new_state_b]:
state.conv.append_message(state.conv.roles[0], user_prompt)
state.conv.append_message(state.conv.roles[1], None)
state.skip_next = False
return [
new_state_a, new_state_b, new_state_a.model_name, new_state_b.model_name
]
def bot(state_a, state_b, request: gr.Request):
new_states = [state_a, state_b]
generators = []
for state in new_states:
try:
# TODO(#1): Allow user to set configuration.
# bot_response returns a generator yielding states.
generator = bot_response(state,
temperature=0.9,
top_p=0.9,
max_new_tokens=100,
request=request)
generators.append(generator)
# TODO(#1): Narrow down the exception type.
except Exception as e: # pylint: disable=broad-except
print(f"Error in bot_response: {e}")
raise e
new_responses = [None, None]
# It simulates concurrent response generation from two models.
while True:
stop = True
for i in range(len(generators)):
try:
yielded = next(generators[i])
# The generator yields a tuple, with the new state as the first item.
new_state = yielded[0]
new_states[i] = new_state
# The last item from 'messages' represents the response to the prompt.
bot_message = new_state.conv.messages[-1]
# Each message in conv.messages is structured as [role, message],
# so we extract the last message component.
new_responses[i] = bot_message[-1]
stop = False
except StopIteration:
pass
# TODO(#1): Narrow down the exception type.
except Exception as e: # pylint: disable=broad-except
print(f"Error in generator: {e}")
raise e
yield new_states + new_responses
if stop:
break
with gr.Blocks(title="Arena") as app:
with gr.Row():
response_type_radio = gr.Radio(
[response_type.value for response_type in ResponseType],
label="Response type",
info="Choose the type of response you want from the model.")
source_language = gr.Dropdown(
choices=SUPPORTED_TRANSLATION_LANGUAGES,
label="Source language",
info="Choose the source language for translation.",
interactive=True,
visible=False)
target_language = gr.Dropdown(
choices=SUPPORTED_TRANSLATION_LANGUAGES,
label="Target language",
info="Choose the target language for translation.",
interactive=True,
visible=False)
def update_language_visibility(response_type):
visible = response_type == ResponseType.TRANSLATE.value
return {
source_language: gr.Dropdown(visible=visible),
target_language: gr.Dropdown(visible=visible)
}
response_type_radio.change(update_language_visibility, response_type_radio,
[source_language, target_language])
model_names = [gr.State(None), gr.State(None)]
responses = [gr.State(None), gr.State(None)]
# states stores FastChat-specific conversation states.
states = [gr.State(None), gr.State(None)]
prompt = gr.TextArea(label="Prompt", lines=4)
submit = gr.Button()
with gr.Row():
responses[0] = gr.Textbox(label="Model A", interactive=False)
responses[1] = gr.Textbox(label="Model B", interactive=False)
# TODO(#5): Display it only after the user submits the prompt.
# TODO(#6): Block voting if the response_type is not set.
# TODO(#6): Block voting if the user already voted.
with gr.Row():
option_a = gr.Button(VoteOptions.MODEL_A.value)
option_a.click(
vote, states +
[option_a, response_type_radio, source_language, target_language])
option_b = gr.Button("Model B is better")
option_b.click(
vote, states +
[option_b, response_type_radio, source_language, target_language])
tie = gr.Button("Tie")
tie.click(
vote,
states + [tie, response_type_radio, source_language, target_language])
# TODO(#7): Hide it until the user votes.
with gr.Accordion("Show models", open=False):
with gr.Row():
model_names[0] = gr.Textbox(label="Model A", interactive=False)
model_names[1] = gr.Textbox(label="Model B", interactive=False)
submit.click(user, prompt, states + model_names,
queue=False).then(bot, states, states + responses)
if __name__ == "__main__":
# We need to enable queue to use generators.
app.queue()
app.launch(debug=True)
|