File size: 6,839 Bytes
0dd5c06
 
 
 
cf196b3
 
73e8b86
cf196b3
73e8b86
 
 
cf196b3
 
67812d2
73e8b86
cf196b3
 
 
73e8b86
1371afd
73e8b86
71d0339
cf196b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47db0c3
cf196b3
 
b6833d5
cf196b3
 
 
 
 
47db0c3
cf196b3
47db0c3
cf196b3
 
 
 
 
 
 
 
 
 
47db0c3
cf196b3
47db0c3
cf196b3
 
 
 
 
 
 
 
 
 
73e8b86
c73f9e9
6b89337
 
 
73e8b86
6b89337
c73f9e9
73e8b86
 
 
 
6b89337
73e8b86
 
 
 
6b89337
 
73e8b86
6b89337
73e8b86
 
c73f9e9
73e8b86
 
 
 
 
 
 
 
 
 
 
 
6b89337
 
 
73e8b86
 
 
44ad98f
73e8b86
c73f9e9
 
 
 
6b89337
c73f9e9
 
 
 
 
 
 
 
73e8b86
c73f9e9
73e8b86
 
 
2e9ad55
 
 
 
 
6b89337
73e8b86
 
 
 
 
300b938
cf196b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871741c
cf196b3
871741c
 
cf196b3
 
 
 
 
6b89337
 
 
 
 
 
 
 
 
73e8b86
6b89337
 
73e8b86
71d0339
 
 
cf196b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d0339
73e8b86
 
 
 
 
6b89337
 
73e8b86
 
 
 
6b89337
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
It provides a platform for comparing the responses of two LLMs. 
"""

import enum
import json
from random import sample
from uuid import uuid4

from fastchat.serve import gradio_web_server
from fastchat.serve.gradio_web_server import bot_response
import firebase_admin
from firebase_admin import firestore
import gradio as gr

db_app = firebase_admin.initialize_app()
db = firestore.client()

# TODO(#1): Add more models.
SUPPORTED_MODELS = ["gpt-4", "gpt-4-turbo", "gpt-3.5-turbo", "gemini-pro"]

# TODO(#4): Add more languages.
SUPPORTED_TRANSLATION_LANGUAGES = ["Korean", "English"]


class ResponseType(enum.Enum):
  SUMMARIZE = "Summarize"
  TRANSLATE = "Translate"


class VoteOptions(enum.Enum):
  MODEL_A = "Model A is better"
  MODEL_B = "Model B is better"
  TIE = "Tie"


def vote(state_a, state_b, vote_button, res_type, source_lang, target_lang):
  doc_id = uuid4().hex
  winner = VoteOptions(vote_button).name.lower()

  # The 'messages' field in the state is an array of arrays, which is
  # not supported by Firestore. Therefore, we convert it to a JSON string.
  model_a_conv = json.dumps(state_a.dict())
  model_b_conv = json.dumps(state_b.dict())

  if res_type == ResponseType.SUMMARIZE.value:
    doc_ref = db.collection("arena-summarizations").document(doc_id)
    doc_ref.set({
        "id": doc_id,
        "model_a": state_a.model_name,
        "model_b": state_b.model_name,
        "model_a_conv": model_a_conv,
        "model_b_conv": model_b_conv,
        "winner": winner,
        "timestamp": firestore.SERVER_TIMESTAMP
    })
    return

  if res_type == ResponseType.TRANSLATE.value:
    doc_ref = db.collection("arena-translations").document(doc_id)
    doc_ref.set({
        "id": doc_id,
        "model_a": state_a.model_name,
        "model_b": state_b.model_name,
        "model_a_conv": model_a_conv,
        "model_b_conv": model_b_conv,
        "source_language": source_lang.lower(),
        "target_language": target_lang.lower(),
        "winner": winner,
        "timestamp": firestore.SERVER_TIMESTAMP
    })


def user(user_prompt):
  model_pair = sample(SUPPORTED_MODELS, 2)
  new_state_a = gradio_web_server.State(model_pair[0])
  new_state_b = gradio_web_server.State(model_pair[1])

  for state in [new_state_a, new_state_b]:
    state.conv.append_message(state.conv.roles[0], user_prompt)
    state.conv.append_message(state.conv.roles[1], None)
    state.skip_next = False

  return [
      new_state_a, new_state_b, new_state_a.model_name, new_state_b.model_name
  ]


def bot(state_a, state_b, request: gr.Request):
  new_states = [state_a, state_b]

  generators = []
  for state in new_states:
    try:
      # TODO(#1): Allow user to set configuration.
      # bot_response returns a generator yielding states.
      generator = bot_response(state,
                               temperature=0.9,
                               top_p=0.9,
                               max_new_tokens=100,
                               request=request)
      generators.append(generator)

    # TODO(#1): Narrow down the exception type.
    except Exception as e:  # pylint: disable=broad-except
      print(f"Error in bot_response: {e}")
      raise e

  new_responses = [None, None]

  # It simulates concurrent response generation from two models.
  while True:
    stop = True

    for i in range(len(generators)):
      try:
        yielded = next(generators[i])

        # The generator yields a tuple, with the new state as the first item.
        new_state = yielded[0]
        new_states[i] = new_state

        # The last item from 'messages' represents the response to the prompt.
        bot_message = new_state.conv.messages[-1]

        # Each message in conv.messages is structured as [role, message],
        # so we extract the last message component.
        new_responses[i] = bot_message[-1]

        stop = False

      except StopIteration:
        pass

      # TODO(#1): Narrow down the exception type.
      except Exception as e:  # pylint: disable=broad-except
        print(f"Error in generator: {e}")
        raise e

    yield new_states + new_responses

    if stop:
      break


with gr.Blocks(title="Arena") as app:
  with gr.Row():
    response_type_radio = gr.Radio(
        [response_type.value for response_type in ResponseType],
        label="Response type",
        info="Choose the type of response you want from the model.")

    source_language = gr.Dropdown(
        choices=SUPPORTED_TRANSLATION_LANGUAGES,
        label="Source language",
        info="Choose the source language for translation.",
        interactive=True,
        visible=False)
    target_language = gr.Dropdown(
        choices=SUPPORTED_TRANSLATION_LANGUAGES,
        label="Target language",
        info="Choose the target language for translation.",
        interactive=True,
        visible=False)

    def update_language_visibility(response_type):
      visible = response_type == ResponseType.TRANSLATE.value
      return {
          source_language: gr.Dropdown(visible=visible),
          target_language: gr.Dropdown(visible=visible)
      }

    response_type_radio.change(update_language_visibility, response_type_radio,
                               [source_language, target_language])

  model_names = [gr.State(None), gr.State(None)]
  responses = [gr.State(None), gr.State(None)]

  # states stores FastChat-specific conversation states.
  states = [gr.State(None), gr.State(None)]

  prompt = gr.TextArea(label="Prompt", lines=4)
  submit = gr.Button()

  with gr.Row():
    responses[0] = gr.Textbox(label="Model A", interactive=False)
    responses[1] = gr.Textbox(label="Model B", interactive=False)

  # TODO(#5): Display it only after the user submits the prompt.
  # TODO(#6): Block voting if the response_type is not set.
  # TODO(#6): Block voting if the user already voted.
  with gr.Row():
    option_a = gr.Button(VoteOptions.MODEL_A.value)
    option_a.click(
        vote, states +
        [option_a, response_type_radio, source_language, target_language])

    option_b = gr.Button("Model B is better")
    option_b.click(
        vote, states +
        [option_b, response_type_radio, source_language, target_language])

    tie = gr.Button("Tie")
    tie.click(
        vote,
        states + [tie, response_type_radio, source_language, target_language])

  # TODO(#7): Hide it until the user votes.
  with gr.Accordion("Show models", open=False):
    with gr.Row():
      model_names[0] = gr.Textbox(label="Model A", interactive=False)
      model_names[1] = gr.Textbox(label="Model B", interactive=False)

  submit.click(user, prompt, states + model_names,
               queue=False).then(bot, states, states + responses)

if __name__ == "__main__":
  # We need to enable queue to use generators.
  app.queue()
  app.launch(debug=True)