yasserrmd commited on
Commit
81e09eb
·
verified ·
1 Parent(s): 56e7657

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -29
app.py CHANGED
@@ -1,38 +1,13 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import os
4
- from sympy import symbols, Eq, solve, latex
5
 
6
  # Initialize the Hugging Face Inference Client
7
  client = InferenceClient()
8
 
9
 
10
 
11
- def preprocess_latex(content):
12
- """
13
- Preprocess the AI response using sympy to properly format mathematical expressions.
14
- """
15
- lines = content.split("\n") # Split response into lines
16
- processed_lines = []
17
-
18
- for line in lines:
19
- if "[" in line and "]" in line: # Detect mathematical expressions in brackets
20
- while "[" in line and "]" in line:
21
- start = line.index("[")
22
- end = line.index("]") + 1
23
- math_expr = line[start + 1 : end - 1].strip()
24
- try:
25
- # Parse the math expression and convert to LaTeX
26
- sympy_expr = sympify(math_expr)
27
- latex_expr = latex(sympy_expr)
28
- line = line[:start] + f"$$ {latex_expr} $$" + line[end:]
29
- except Exception:
30
- # Fallback to raw math if parsing fails
31
- line = line[:start] + f"$$ {math_expr} $$" + line[end:]
32
- processed_lines.append(line)
33
-
34
- return "\n".join(processed_lines)
35
-
36
 
37
 
38
  # Function to generate and format AI response
@@ -47,9 +22,7 @@ def generate_response(prompt_template, **kwargs):
47
  top_p=0.8
48
  )
49
  response_content = response.choices[0].message["content"]
50
- print(response_content)
51
- formatted_response = preprocess_latex(response_content)
52
- return gr.update(value=f"{formatted_response}")
53
 
54
  # Gradio app interface
55
  with gr.Blocks() as app:
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import os
4
+
5
 
6
  # Initialize the Hugging Face Inference Client
7
  client = InferenceClient()
8
 
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  # Function to generate and format AI response
 
22
  top_p=0.8
23
  )
24
  response_content = response.choices[0].message["content"]
25
+ return gr.update(value=f"{response_content}")
 
 
26
 
27
  # Gradio app interface
28
  with gr.Blocks() as app: