File size: 65,387 Bytes
513e1fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 |
# coding=utf-8
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeBERTa-v2 model. """
import math
from collections.abc import Sequence
from typing import Tuple, Optional
import clip
import numpy as np
import torch
from torch import _softmax_backward_data, nn
from torch.nn import CrossEntropyLoss, LayerNorm
from .adapter import Adapter
from .moe import MoE
from transformers.activations import ACT2FN
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers import DebertaV2Config, DebertaV2ForSequenceClassification
from .evl import EVLTransformer, recursive_gumbel_softmax
from transformers import pytorch_utils
_CONFIG_FOR_DOC = "DebertaV2Config"
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/deberta-v2-xlarge",
"microsoft/deberta-v2-xxlarge",
"microsoft/deberta-v2-xlarge-mnli",
"microsoft/deberta-v2-xxlarge-mnli",
]
class MaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
loss_moe: Optional[torch.FloatTensor] = None
loads: Optional[torch.FloatTensor] = None
embeddings: Optional[torch.FloatTensor] = None
class BaseModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
position_embeddings: torch.FloatTensor = None
attention_mask: torch.BoolTensor = None
loss_moe: torch.FloatTensor = None
video_g: torch.FloatTensor = None
loads: torch.LongTensor = None
embeddings: torch.FloatTensor = None
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (:obj:`torch.tensor`): The input tensor that will apply softmax.
mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example::
import torch
from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
# Make a tensor
x = torch.randn([4,20,100])
# Create a mask
mask = (x>0).int()
y = XSoftmax.apply(x, mask, dim=-1)
"""
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.bool())
output = input.masked_fill(rmask, float("-inf"))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output)
return output
@staticmethod
def backward(self, grad_output):
(output,) = self.saved_tensors
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
class DropoutContext(object):
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
# Copied from transformers.models.deberta.modeling_deberta.get_mask
def get_mask(input, local_context):
if not isinstance(local_context, DropoutContext):
dropout = local_context
mask = None
else:
dropout = local_context.dropout
dropout *= local_context.scale
mask = local_context.mask if local_context.reuse_mask else None
if dropout > 0 and mask is None:
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).bool()
if isinstance(local_context, DropoutContext):
if local_context.mask is None:
local_context.mask = mask
return mask, dropout
# Copied from transformers.models.deberta.modeling_deberta.XDropout
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (:obj:`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
class DebertaV2SelfOutput(nn.Module):
def __init__(self, config, ds_factor, dropout, add_moe, gating):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.add_moe = add_moe
if not self.add_moe and ds_factor:
self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
else:
self.moe_layer = MoE(ds_factor = ds_factor, moe_input_size=config.hidden_size, dropout=dropout, num_experts=4, top_k=2, gating=gating)
def forward(self, hidden_states, input_tensor, temporal_factor = None, train_mode = True):
hidden_states = self.dense(hidden_states)
if not self.add_moe:
hidden_states = self.adapter(hidden_states)
else:
hidden_states, loss_moe, load = self.moe_layer(temporal_factor, hidden_states, train=train_mode)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
if not self.add_moe:
return hidden_states, None, None
return hidden_states, loss_moe, load
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
class DebertaV2Attention(nn.Module):
def __init__(self, config, ds_factor, dropout, add_moe = False, gating='linear'):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = DebertaV2SelfOutput(config, ds_factor, dropout, add_moe, gating)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
return_att=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
temporal_factor=None,
train_mode=True
):
self_output = self.self(
hidden_states,
attention_mask,
return_att,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if return_att:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output, loss_moe, load = self.output(self_output, query_states, temporal_factor, train_mode)
if return_att:
return (attention_output, att_matrix, loss_moe)
else:
return attention_output, loss_moe, load
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
class DebertaV2Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
class DebertaV2Output(nn.Module):
def __init__(self, config, ds_factor, dropout, add_moe = False, gating='linear',layer_id=0):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
self.ds_factor = ds_factor
self.add_moe = add_moe
if not self.add_moe and self.ds_factor:
self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
elif self.add_moe:
self.moe_layer = MoE(ds_factor=ds_factor, moe_input_size=config.hidden_size, dropout=dropout, num_experts=4, top_k=1, gating=gating, layer_id=layer_id)
#self.adapter = Adapter(ds_factor, config.hidden_size, dropout=dropout)
def forward(self, hidden_states, input_tensor, temporal_factor, train_mode):
hidden_states = self.dense(hidden_states)
if not self.add_moe and self.ds_factor:
hidden_states = self.adapter(hidden_states)
elif self.add_moe:
hidden_states, loss_moe, load = self.moe_layer(temporal_factor, hidden_states, train=train_mode)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
if not self.add_moe:
return hidden_states, None, None
return hidden_states, loss_moe, load
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
class DebertaV2Layer(nn.Module):
def __init__(
self,
config,
ds_factor_attn,
ds_factor_ff,
dropout,
layer_id,
):
super().__init__()
self.layer_id = layer_id
self.add_moe = False
#if layer_id >= config.num_hidden_layers - 2:
# self.add_moe = True
if layer_id < 2:
self.add_moe = True
self.attention = DebertaV2Attention(config, ds_factor_attn, dropout, False)
self.intermediate = DebertaV2Intermediate(config)
self.output = DebertaV2Output(config, ds_factor_ff, dropout, self.add_moe, gating="linear", layer_id = layer_id)
def forward(
self,
temporal_factor,
hidden_states,
attention_mask,
return_att=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
train_mode=True,
):
attention_output = self.attention(
hidden_states,
attention_mask,
return_att=return_att,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
temporal_factor=temporal_factor,
train_mode=train_mode
)
if return_att:
attention_output, att_matrix, loss_moe_attn = attention_output
else:
attention_output, loss_moe_attn, load = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output, loss_moe_ffn, load = self.output(intermediate_output, attention_output, temporal_factor=temporal_factor, train_mode=train_mode)
loss_moe = loss_moe_attn if loss_moe_attn else loss_moe_ffn
if return_att:
return (layer_output, att_matrix)
return layer_output, loss_moe, load
class ConvLayer(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = getattr(config, "conv_kernel_size", 3)
groups = getattr(config, "conv_groups", 1)
self.conv_act = getattr(config, "conv_act", "tanh")
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size,
padding=(kernel_size - 1) // 2,
groups=groups,
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, residual_states, input_mask):
out = (
self.conv(hidden_states.permute(0, 2, 1).contiguous())
.permute(0, 2, 1)
.contiguous()
)
rmask = (1 - input_mask).bool()
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
out = ACT2FN[self.conv_act](self.dropout(out))
layer_norm_input = residual_states + out
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
if input_mask is None:
output_states = output
else:
if input_mask.dim() != layer_norm_input.dim():
if input_mask.dim() == 4:
input_mask = input_mask.squeeze(1).squeeze(1)
input_mask = input_mask.unsqueeze(2)
input_mask = input_mask.to(output.dtype)
output_states = output * input_mask
return output_states
class DebertaV2Encoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(
self,
config,
ds_factor_attn,
ds_factor_ff,
dropout,
):
super().__init__()
self.layer = nn.ModuleList(
[
DebertaV2Layer(
config,
ds_factor_attn,
ds_factor_ff,
dropout,
_,
)
for _ in range(config.num_hidden_layers)
]
)
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.position_buckets = getattr(config, "position_buckets", -1)
pos_ebd_size = self.max_relative_positions * 2
if self.position_buckets > 0:
pos_ebd_size = self.position_buckets * 2
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
self.norm_rel_ebd = [
x.strip()
for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")
]
if "layer_norm" in self.norm_rel_ebd:
self.LayerNorm = LayerNorm(
config.hidden_size, config.layer_norm_eps, elementwise_affine=True
)
self.conv = (
ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
)
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
rel_embeddings = self.LayerNorm(rel_embeddings)
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(
-2
).unsqueeze(-1)
attention_mask = attention_mask.byte()
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = (
query_states.size(-2)
if query_states is not None
else hidden_states.size(-2)
)
relative_pos = build_relative_position(
q,
hidden_states.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
)
return relative_pos
def forward(
self,
temporal_factor,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
train_mode=True
):
if attention_mask.dim() <= 2:
input_mask = attention_mask
else:
input_mask = (attention_mask.sum(-2) > 0).byte()
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
output_states = next_kv
loss_moe = 0
loads = []
embeddings = []
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
output_states, _, load = layer_module(
temporal_factor,
next_kv,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
train_mode=train_mode
)
if isinstance(load, torch.Tensor):
loads.append(load)
if _:
loss_moe = loss_moe + _
if output_attentions:
output_states, att_m = output_states
if i == 0 and self.conv is not None:
output_states = self.conv(hidden_states, output_states, input_mask)
if query_states is not None:
query_states = output_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = output_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if not return_dict:
return tuple(
v
for v in [output_states, all_hidden_states, all_attentions]
if v is not None
)
if len(loads)>0:
loads = torch.stack(loads, dim = 0)
if len(embeddings) >0:
embeddings = torch.cat(embeddings, dim=0)
return BaseModelOutput(
last_hidden_state=output_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
loss_moe=loss_moe,
loads=loads
)
def make_log_bucket_position(relative_pos, bucket_size, max_position):
sign = np.sign(relative_pos)
mid = bucket_size // 2
abs_pos = np.where(
(relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos)
)
log_pos = (
np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1))
+ mid
)
bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int)
return bucket_pos
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
"""
Build relative position according to the query and key
We assume the absolute position of query :math:`P_q` is range from (0, query_size) and the absolute position of key
:math:`P_k` is range from (0, key_size), The relative positions from query to key is :math:`R_{q \\rightarrow k} =
P_q - P_k`
Args:
query_size (int): the length of query
key_size (int): the length of key
bucket_size (int): the size of position bucket
max_position (int): the maximum allowed absolute position
Return:
:obj:`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = np.arange(0, query_size)
k_ids = np.arange(0, key_size)
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
if bucket_size > 0 and max_position > 0:
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = rel_pos_ids.unsqueeze(0)
return rel_pos_ids
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
return c2p_pos.expand(
[
query_layer.size(0),
query_layer.size(1),
query_layer.size(2),
relative_pos.size(-1),
]
)
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
return c2p_pos.expand(
[
query_layer.size(0),
query_layer.size(1),
key_layer.size(-2),
key_layer.size(-2),
]
)
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
return pos_index.expand(
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))
)
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (:obj:`DebertaV2Config`):
A model config class instance with the configuration to build a new model. The schema is similar to
`BertConfig`, for more details, please refer :class:`~transformers.DebertaV2Config`
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
_attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_head_size = getattr(
config, "attention_head_size", _attention_head_size
)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.share_att_key = getattr(config, "share_att_key", False)
self.pos_att_type = (
config.pos_att_type if config.pos_att_type is not None else []
)
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.position_buckets = getattr(config, "position_buckets", -1)
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_ebd_size = self.max_relative_positions
if self.position_buckets > 0:
self.pos_ebd_size = self.position_buckets
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
if not self.share_att_key:
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
self.pos_key_proj = nn.Linear(
config.hidden_size, self.all_head_size, bias=True
)
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
self.pos_query_proj = nn.Linear(
config.hidden_size, self.all_head_size
)
self.dropout = StableDropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x, attention_heads):
new_x_shape = x.size()[:-1] + (attention_heads, -1)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
def forward(
self,
hidden_states,
attention_mask,
return_att=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (:obj:`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
`Attention(Q,K,V)`
attention_mask (:obj:`torch.ByteTensor`):
An attention mask matrix of shape [`B`, `N`, `N`] where `B` is the batch size, `N` is the maximum
sequence length in which element [i,j] = `1` means the `i` th token in the input can attend to the `j`
th token.
return_att (:obj:`bool`, optional):
Whether return the attention matrix.
query_states (:obj:`torch.FloatTensor`, optional):
The `Q` state in `Attention(Q,K,V)`.
relative_pos (:obj:`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [`B`, `N`, `N`] with
values ranging in [`-max_relative_positions`, `max_relative_positions`].
rel_embeddings (:obj:`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [:math:`2 \\times
\\text{max_relative_positions}`, `hidden_size`].
"""
if query_states is None:
query_states = hidden_states
query_layer = self.transpose_for_scores(
self.query_proj(query_states), self.num_attention_heads
)
key_layer = self.transpose_for_scores(
self.key_proj(hidden_states), self.num_attention_heads
)
value_layer = self.transpose_for_scores(
self.value_proj(hidden_states), self.num_attention_heads
)
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1
if "c2p" in self.pos_att_type:
scale_factor += 1
if "p2c" in self.pos_att_type:
scale_factor += 1
if "p2p" in self.pos_att_type:
scale_factor += 1
scale = math.sqrt(query_layer.size(-1) * scale_factor)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_attention_bias(
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
)
if rel_att is not None:
attention_scores = attention_scores + rel_att
attention_scores = attention_scores
attention_scores = attention_scores.view(
-1,
self.num_attention_heads,
attention_scores.size(-2),
attention_scores.size(-1),
)
# bsz x height x length x dimension
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context_layer = torch.bmm(
attention_probs.view(
-1, attention_probs.size(-2), attention_probs.size(-1)
),
value_layer,
)
context_layer = (
context_layer.view(
-1,
self.num_attention_heads,
context_layer.size(-2),
context_layer.size(-1),
)
.permute(0, 2, 1, 3)
.contiguous()
)
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(*new_context_layer_shape)
if return_att:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_attention_bias(
self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(
q,
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bsz x height x query x key
elif relative_pos.dim() != 4:
raise ValueError(
f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}"
)
att_span = self.pos_ebd_size
relative_pos = relative_pos.long().to(query_layer.device)
rel_embeddings = rel_embeddings[
self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :
].unsqueeze(0)
if self.share_att_key:
pos_query_layer = self.transpose_for_scores(
self.query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
pos_key_layer = self.transpose_for_scores(
self.key_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
else:
if "c2p" in self.pos_att_type or "p2p" in self.pos_att_type:
pos_key_layer = self.transpose_for_scores(
self.pos_key_proj(rel_embeddings), self.num_attention_heads
).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
) # .split(self.all_head_size, dim=-1)
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
pos_query_layer = self.transpose_for_scores(
self.pos_query_proj(rel_embeddings), self.num_attention_heads
).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
) # .split(self.all_head_size, dim=-1)
score = 0
# content->position
if "c2p" in self.pos_att_type:
scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(
c2p_att,
dim=-1,
index=c2p_pos.squeeze(0).expand(
[query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]
),
)
score += c2p_att / scale
# position->content
if "p2c" in self.pos_att_type or "p2p" in self.pos_att_type:
scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
if key_layer.size(-2) != query_layer.size(-2):
r_pos = build_relative_position(
key_layer.size(-2),
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
).to(query_layer.device)
r_pos = r_pos.unsqueeze(0)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
if query_layer.size(-2) != key_layer.size(-2):
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
if "p2c" in self.pos_att_type:
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
p2c_att = torch.gather(
p2c_att,
dim=-1,
index=p2c_pos.squeeze(0).expand(
[query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]
),
).transpose(-1, -2)
if query_layer.size(-2) != key_layer.size(-2):
p2c_att = torch.gather(
p2c_att,
dim=-2,
index=pos_index.expand(
p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))
),
)
score += p2c_att / scale
# position->position
if "p2p" in self.pos_att_type:
pos_query = pos_query_layer[:, :, att_span:, :]
p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2))
p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:])
if query_layer.size(-2) != key_layer.size(-2):
p2p_att = torch.gather(
p2p_att,
dim=-2,
index=pos_index.expand(
query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))
),
)
p2p_att = torch.gather(
p2p_att,
dim=-1,
index=c2p_pos.expand(
[
query_layer.size(0),
query_layer.size(1),
query_layer.size(2),
relative_pos.size(-1),
]
),
)
score += p2p_att
return score
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
class DebertaV2Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(
self,
config,
features_dim,
add_video_feat=False,
max_feats = 10
):
super().__init__()
pad_token_id = getattr(config, "pad_token_id", 0)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.word_embeddings = nn.Embedding(
config.vocab_size, self.embedding_size, padding_idx=pad_token_id
)
self.position_biased_input = getattr(config, "position_biased_input", True)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, self.embedding_size
) # it is used for the decoder anyway
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, self.embedding_size
)
if self.embedding_size != config.hidden_size:
self.embed_proj = nn.Linear(
self.embedding_size, config.hidden_size, bias=False
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
)
self.add_video_feat = add_video_feat
self.features_dim = features_dim
if self.features_dim:
self.linear_video = nn.Linear(features_dim, config.hidden_size)
if self.add_video_feat:
self.evl = EVLTransformer(max_feats, decoder_num_layers=1,
decoder_qkv_dim=768, add_video_feat=self.add_video_feat,
add_mask=True)
#self.evl = ConvNet()
def get_video_embedding(self, video, video_mask):
if self.add_video_feat:
video_g = self.evl(video, video_mask)
video_feat = self.linear_video(video)
video_feat_l = torch.cat([video_g, video_feat], dim = 1)
else:
video_feat_l = self.linear_video(video)
video_feat_tmp = video_feat_l * video_mask.unsqueeze(-1)
video_g = torch.sum(video_feat_tmp, dim = 1) / video_mask.sum(dim = 1, keepdim=True)
return video_g, video_feat_l
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
mask=None,
inputs_embeds=None,
video=None,
video_mask=None
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.features_dim and video is not None:
video_global, video = self.get_video_embedding(video, video_mask)
inputs_embeds = torch.cat([video, inputs_embeds], 1)
input_shape = inputs_embeds[:, :, 0].shape
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(
input_shape, dtype=torch.long, device=self.position_ids.device
)
if self.position_embeddings is not None:
position_embeddings = self.position_embeddings(position_ids.long())
else:
position_embeddings = torch.zeros_like(inputs_embeds)
embeddings = inputs_embeds
if self.position_biased_input:
embeddings = embeddings + position_embeddings
if self.config.type_vocab_size > 0:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = embeddings + token_type_embeddings
if self.embedding_size != self.config.hidden_size:
embeddings = self.embed_proj(embeddings)
embeddings = self.LayerNorm(embeddings)
if mask is not None:
if mask.dim() != embeddings.dim():
if mask.dim() == 4:
mask = mask.squeeze(1).squeeze(1)
mask = mask.unsqueeze(2)
mask = mask.to(embeddings.dtype)
embeddings = embeddings * mask
embeddings = self.dropout(embeddings)
return {
"embeddings": embeddings,
"position_embeddings": position_embeddings,
"video_global": video_global
}
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
class DebertaV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaV2Config
base_model_prefix = "deberta"
_keys_to_ignore_on_load_missing = ["position_ids"]
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
def __init__(self, config):
super().__init__(config)
self._register_load_state_dict_pre_hook(self._pre_load_hook)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _pre_load_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""
Removes the classifier if it doesn't have the correct number of labels.
"""
self_state = self.state_dict()
if (
("classifier.weight" in self_state)
and ("classifier.weight" in state_dict)
and self_state["classifier.weight"].size()
!= state_dict["classifier.weight"].size()
):
print(
f"The checkpoint classifier head has a shape {state_dict['classifier.weight'].size()} and this model "
f"classifier head has a shape {self_state['classifier.weight'].size()}. Ignoring the checkpoint "
f"weights. You should train your model on new data."
)
del state_dict["classifier.weight"]
if "classifier.bias" in state_dict:
del state_dict["classifier.bias"]
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
class DebertaV2Model(DebertaV2PreTrainedModel):
def __init__(
self,
config,
max_feats=10,
features_dim=768,
freeze_lm=False,
ds_factor_attn=8,
ds_factor_ff=8,
ft_ln=False,
dropout=0.1,
add_video_feat = False,
freeze_ad=False,
):
super().__init__(config)
self.embeddings = DebertaV2Embeddings(
config,
features_dim,
add_video_feat,
max_feats
)
self.encoder = DebertaV2Encoder(
config,
ds_factor_attn,
ds_factor_ff,
dropout,
)
self.z_steps = 0
self.config = config
self.features_dim = features_dim
self.max_feats = max_feats
if freeze_lm:
for n, p in self.named_parameters():
#if (not "linear_video" in n) and (not "adapter" in n):
# if ft_ln and "LayerNorm" in n:
# continue
# else:
# p.requires_grad_(False)
if not freeze_ad:
if (not "evl" in n) and (not "linear_video" in n) and (not "adapter" in n) and (not "moe" in n):
if ft_ln and "LayerNorm" in n:
continue
else:
p.requires_grad_(False)
else:
if not "evl" in n:
p.requires_grad_(False)
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError(
"The prune function is not implemented in DeBERTa model."
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
video=None,
video_mask=None,
train_mode = True
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if self.features_dim and video is not None:
if video_mask is None:
video_shape = video[:, :, 0].size()
video_mask = torch.ones(video_shape, device=device)
attention_mask = torch.cat([video_mask, attention_mask], 1)
input_shape = attention_mask.size()
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
mask=attention_mask,
inputs_embeds=inputs_embeds,
video=video,
video_mask=video_mask[:, 1:] if video_mask.shape[1] != video.shape[1] else video_mask
)
embedding_output, position_embeddings, video_g = (
embedding_output["embeddings"],
embedding_output["position_embeddings"],
embedding_output["video_global"]
)
video_g = video_g.squeeze()
encoder_outputs = self.encoder(
video_g,
embedding_output,
attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
train_mode=train_mode
)
encoded_layers = encoder_outputs[1]
loss_moe =encoder_outputs.loss_moe
if self.z_steps > 1:
hidden_states = encoded_layers[-2]
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
query_states = encoded_layers[-1]
rel_embeddings = self.encoder.get_rel_embedding()
attention_mask = self.encoder.get_attention_mask(attention_mask)
rel_pos = self.encoder.get_rel_pos(embedding_output)
for layer in layers[1:]:
query_states = layer(
hidden_states,
attention_mask,
return_att=False,
query_states=query_states,
relative_pos=rel_pos,
rel_embeddings=rel_embeddings,
)
encoded_layers.append(query_states)
sequence_output = encoded_layers[-1]
if not return_dict:
return (sequence_output,) + encoder_outputs[
(1 if output_hidden_states else 2) :
]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states
if output_hidden_states
else None,
attentions=encoder_outputs.attentions,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
video_g=video_g,
loss_moe = loss_moe,
loads=encoder_outputs.loads
)
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(
self,
config,
max_feats=10,
features_dim=768,
freeze_lm=True,
freeze_mlm=True,
ds_factor_attn=8,
ds_factor_ff=8,
ft_ln=True,
dropout=0.1,
n_ans=0,
freeze_last=True,
add_video_feat = False,
freeze_ad=False,
add_temporal_trans = False
):
"""
:param config: BiLM configuration
:param max_feats: maximum number of frames used by the model
:param features_dim: embedding dimension of the visual features, set = 0 for text-only mode
:param freeze_lm: whether to freeze or not the language model (Transformer encoder + token embedder)
:param freeze_mlm: whether to freeze or not the MLM head
:param ds_factor_attn: downsampling factor for the adapter after self-attention, no adapter if set to 0
:param ds_factor_ff: downsampling factor for the adapter after feed-forward, no adapter if set to 0
:param ft_ln: whether to finetune or not the normalization layers
:param dropout: dropout probability in the adapter
:param n_ans: number of answers in the downstream vocabulary, set = 0 during cross-modal training
:param freeze_last: whether to freeze or not the answer embedding module
"""
super().__init__(config)
# self.clip, _ = clip.load("ViT-L/14")
# for p in self.clip.parameters():
# p.requires_grad_(False)
self.deberta = DebertaV2Model(
config,
max_feats,
features_dim,
freeze_lm,
ds_factor_attn,
ds_factor_ff,
ft_ln,
dropout,
add_video_feat,
freeze_ad
)
self.add_video_feat = add_video_feat
self.lm_predictions = DebertaV2OnlyMLMHead(config)
self.features_dim = features_dim
if freeze_mlm:
for n, p in self.lm_predictions.named_parameters():
if ft_ln and "LayerNorm" in n:
continue
else:
p.requires_grad_(False)
self.init_weights()
self.n_ans = n_ans
if n_ans:
self.answer_embeddings = nn.Embedding(
n_ans, self.deberta.embeddings.embedding_size
)
self.answer_bias = nn.Parameter(torch.zeros(n_ans))
if freeze_last:
self.answer_embeddings.requires_grad_(False)
self.answer_bias.requires_grad_(False)
def set_answer_embeddings(self, a2tok, freeze_last=True):
a2v = self.deberta.embeddings.word_embeddings(a2tok) # answer embeddings (ans_vocab_num, 1, dim)
pad_token_id = getattr(self.config, "pad_token_id", 0)
sum_tokens = (a2tok != pad_token_id).sum(1, keepdims=True) # n_ans (1000, 1) n_tokens
if len(a2v) != self.n_ans: # reinitialize the answer embeddings
assert not self.training
self.n_ans = len(a2v)
self.answer_embeddings = nn.Embedding(
self.n_ans, self.deberta.embeddings.embedding_size
).to(self.device)
self.answer_bias.requires_grad = False
self.answer_bias.resize_(self.n_ans)
self.answer_embeddings.weight.data = torch.div(
(a2v * (a2tok != pad_token_id).float()[:, :, None]).sum(1),
sum_tokens.clamp(min=1),
) # n_ans
a2b = self.lm_predictions.lm_head.bias[a2tok]
self.answer_bias.weight = torch.div(
(a2b * (a2tok != pad_token_id).float()).sum(1), sum_tokens.clamp(min=1)
)
if freeze_last:
self.answer_embeddings.requires_grad_(False)
self.answer_bias.requires_grad_(False)
def emd_context_layer(self, encoder_layers, z_states, attention_mask, encoder, temporal_factor, train_mode):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
att_mask = extended_attention_mask.byte()
attention_mask = att_mask * att_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
hidden_states = encoder_layers[-2]
if not self.config.position_biased_input:
layers = [encoder.layer[-1] for _ in range(2)]
z_states = z_states + hidden_states
query_states = z_states
query_mask = attention_mask
outputs = []
rel_embeddings = encoder.get_rel_embedding()
for layer in layers:
output = layer(
temporal_factor,
hidden_states,
query_mask,
return_att=False,
query_states=query_states,
relative_pos=None,
rel_embeddings=rel_embeddings,
train_mode=train_mode
)
query_states = output[0]
outputs.append(query_states)
else:
outputs = [encoder_layers[-1]]
return outputs
def forward(
self,
input_ids=None,
attention_mask=None,
labels=None,
video=None,
video_mask=None,
train_mode=False,
):
token_type_ids=None
position_ids=None
inputs_embeds=None
output_attentions=None
return_dict=None
mlm=False
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# rand_video = torch.randn(1,30,3,224,224).cuda()
# video = self.clip.encode_image(rand_video.squeeze()).unsqueeze(0)
# video = video.to(torch.float)
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
video=video,
video_mask=video_mask,
train_mode = train_mode
)
loss_moe = outputs['loss_moe']
if labels is not None:
if (
self.features_dim and video is not None
): # ignore the label predictions for visual tokens
video_shape = video[:, :, 0].size()
# add video_general
if self.add_video_feat:
video_shape = (video_shape[0], video_shape[1] + 1)
video_labels = torch.tensor(
[[-100] * video_shape[1]] * video_shape[0],
dtype=torch.long,
device=labels.device,
)
labels = torch.cat([video_labels, labels], 1)
# sequence_output = outputs[0]
modified = self.emd_context_layer(
encoder_layers=outputs["hidden_states"],
z_states=outputs["position_embeddings"].repeat(
input_ids.shape[0] // len(outputs["position_embeddings"]), 1, 1
),
attention_mask=outputs["attention_mask"],
encoder=self.deberta.encoder,
temporal_factor=outputs["video_g"],
train_mode = train_mode
)
bias = None
if self.n_ans and (not mlm): # downstream mode
embeddings = self.answer_embeddings.weight
bias = self.answer_bias
else:
embeddings = self.deberta.embeddings.word_embeddings.weight
prediction_scores = self.lm_predictions(modified[-1], embeddings, bias)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size),
labels.view(-1), # labels[labels > 0].view(-1)
)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return MaskedLMOutput(
loss_moe=loss_moe,
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
loads=outputs.loads,
embeddings=outputs.video_g
)
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
class DebertaV2PredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
class DebertaV2LMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
def forward(self, hidden_states, embedding_weight, bias=None):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
if bias is not None:
logits = (
torch.matmul(hidden_states, embedding_weight.t().to(hidden_states))
+ bias
)
else:
logits = (
torch.matmul(hidden_states, embedding_weight.t().to(hidden_states))
+ self.bias
)
return logits
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
class DebertaV2OnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
# self.predictions = DebertaV2LMPredictionHead(config)
self.lm_head = DebertaV2LMPredictionHead(config)
def forward(self, sequence_output, embedding_weight, bias=None):
prediction_scores = self.lm_head(sequence_output, embedding_weight, bias=bias)
return prediction_scores
|