File size: 5,976 Bytes
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544e91d
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import shutil
import gradio as gr
import torch
from fastapi import FastAPI
import os
import tempfile
from Infer import Infer

title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <div>
    <h1 >Temporal-guided Mixture-of-Experts for Zero-Shot Video Question Answering</h1>
    <h5 style="margin: 0;">Under review.</h5>
  </div>
</div>
                  
<div align="center">
    <div style="display:flex; gap: 0.25rem;" align="center">
        <a href='https://github.com/qyx1121/T-MoENet'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
    </div>
</div>
""")

block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""

def save_video_to_local(video_path):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
    shutil.copyfile(video_path, filename)
    return filename


def generate(video, textbox_in, first_run, state, state_):
    flag = 1
    if not textbox_in:
        if len(state_.messages) > 0:
            textbox_in = state_.messages[-1][1]
            state_.messages.pop(-1)
            flag = 0
        else:
            return "Please enter instruction"
    video = video if video else "none"
    # assert not (os.path.exists(image1) and os.path.exists(video))

    first_run = False if len(state.messages) > 0 else True

    text_en_in = textbox_in.replace("picture", "image")

    # images_tensor = [[], []]
    image_processor = handler.image_processor
    if os.path.exists(image1) and not os.path.exists(video):
        tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['image']
        print(torch.cuda.memory_allocated())
        print(torch.cuda.max_memory_allocated())
    video_processor = handler.video_processor
    if not os.path.exists(image1) and os.path.exists(video):
        tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['video']
        print(torch.cuda.memory_allocated())
        print(torch.cuda.max_memory_allocated())
    if os.path.exists(image1) and os.path.exists(video):
        tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['video']
        
        
        tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['image']
        print(torch.cuda.memory_allocated())
        print(torch.cuda.max_memory_allocated())
        

    text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
    state_.messages[-1] = (state_.roles[1], text_en_out)

    text_en_out = text_en_out.split('#')[0]
    textbox_out = text_en_out

    show_images = ""
    if flag:
        state.append_message(state.roles[0], textbox_in + "\n" + show_images)
    state.append_message(state.roles[1], textbox_out)
    torch.cuda.empty_cache()
    return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))


device = "cpu"
handler = Infer(device)
# handler.model.to(dtype=dtype)
if not os.path.exists("temp"):
    os.makedirs("temp")

print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())

textbox = gr.Textbox(
        show_label=False, placeholder="Enter text and press ENTER", container=False
    )
with gr.Blocks(title='T-MoENet', theme=gr.themes.Default(), css=block_css) as demo:
    gr.Markdown(title_markdown)
    state = gr.State()
    state_ = gr.State()
    first_run = gr.State()
    images_tensor = gr.State()

    with gr.Row():
        with gr.Column(scale=3):
            video = gr.Video(label="Input Video")
            cur_dir = os.path.dirname(os.path.abspath(__file__))
            print(cur_dir)
            gr.Examples(
                examples=[
                    [
                        cur_dir + "/videos/3249402410.mp4",
                        "what did the lady in black on the left do after she finished spreading the sauce on her pizza?",
                    ],
                    [
                        cur_dir + "/videos/4882821564.mp4",
                        "why did the boy clap his hands when he ran to the christmas tree?",
                    ],
                    [
                        cur_dir + "/videos/6233408665.mp4",
                        "what did the people on the sofa do after the lady in pink finished singing?",
                    ],
                ],
                inputs=[video, textbox],
            )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="T-MoENet", bubble_full_width=True)
            with gr.Row():
                with gr.Column(scale=2):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(
                        value="Send", variant="primary", interactive=True
                    )

    submit_btn.click(generate, [video, textbox, first_run, state, state_],
                     [state, state_, chatbot, first_run, textbox,  video])

demo.launch(share=True)