Text-to-Image / app.py
yizhangliu's picture
Update app.py
a4122d2
raw
history blame
10.1 kB
import gradio as gr
model_ids = {"models/runwayml/stable-diffusion-v1-5":"stable-diffusion-v1-5",
"models/stabilityai/stable-diffusion-2":"stable-diffusion-2",
"models/prompthero/openjourney":"openjourney",
}
tab_actions = []
tab_titles = []
for model_id in model_ids.keys():
print(model_id, model_ids[model_id])
try:
tab = gr.Interface.load(model_id)
tab_actions.append(tab)
tab_titles.append(model_ids[model_id])
except:
pass
def infer(prompt):
# gr.Interface.load("models/runwayml/stable-diffusion-v1-5",prompt=prompt).launch()
return prompt
start_work = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
function getClientHeight()
{
var clientHeight=0;
if(document.body.clientHeight&&document.documentElement.clientHeight) {
var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
} else {
var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
}
return clientHeight;
}
function setNativeValue(element, value) {
const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
const prototype = Object.getPrototypeOf(element);
const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
if (valueSetter && valueSetter !== prototypeValueSetter) {
prototypeValueSetter.call(element, value);
} else {
valueSetter.call(element, value);
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
if (typeof window['gradioEl'] === 'undefined') {
window['gradioEl'] = gradioEl;
tabitems = window['gradioEl'].querySelectorAll('.tabitem');
for (var i = 0; i < tabitems.length; i++) {
tabitems[i].childNodes[0].children[0].style.display='none';
tabitems[i].childNodes[0].children[1].children[0].style.display='none';
tabitems[i].childNodes[0].children[1].children[1].children[0].children[1].style.display="none";
}
tab_demo = window['gradioEl'].querySelectorAll('#tab_demo')[0];
tab_demo.style.display = "block";
tab_demo.setAttribute('style', 'height: 100%;');
const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
page1.style.display = "none";
page2.style.display = "block";
window['prevPrompt'] = '';
window['doCheckPrompt'] = 0;
window['checkPrompt'] = function checkPrompt() {
try {
texts = window['gradioEl'].querySelectorAll('textarea');
text0 = texts[0];
text1 = texts[1];
if (window['doCheckPrompt'] == 0 && window['prevPrompt'] != text1.value) {
window['doCheckPrompt'] = 1;
window['prevPrompt'] = text1.value;
for (var i = 2; i < texts.length; i++) {
setNativeValue(texts[i], text1.value);
texts[i].dispatchEvent(new Event('input', { bubbles: true }));
}
setTimeout(function() {
text1 = window['gradioEl'].querySelectorAll('textarea')[1];
//console.log('do_click()_1_' + text1.value);
btns = window['gradioEl'].querySelectorAll('button');
for (var i = 0; i < btns.length; i++) {
if (btns[i].innerText == 'Submit') {
btns[i].focus();
btns[i].click();
//break;
}
}
//console.log('do_click()_3_');
window['doCheckPrompt'] = 0;
}, 10);
}
} catch(e) {
}
}
window['checkPrompt_interval'] = window.setInterval("window.checkPrompt()", 100);
}
/*
texts = gradioEl.querySelectorAll('textarea');
text0 = gradioEl.querySelectorAll('textarea')[0];
text1 = gradioEl.querySelectorAll('textarea')[0];
for (var i = 1; i < texts.length; i++) {
setNativeValue(texts[i], text0.value);
texts[i].dispatchEvent(new Event('input', { bubbles: true }));
}
var st = setTimeout(function() {
text1 = window['gradioEl'].querySelectorAll('textarea')[1];
console.log('do_click()_1_' + text1.value);
btns = window['gradioEl'].querySelectorAll('button');
for (var i = 0; i < btns.length; i++) {
if (btns[i].innerText == 'Submit') {
btns[i].focus();
btns[i].click();
//break;
}
}
console.log('do_click()_3_');
}, 10);
*/
return false;
}"""
with gr.Blocks(title='Text to Image') as demo:
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row():
start_button = gr.Button("Let's GO!", elem_id="start-btn", visible=True)
start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Row(elem_id="prompt_row"):
prompt_input0 = gr.Textbox(lines=4, label="prompt")
prompt_input1 = gr.Textbox(lines=4, label="prompt", visible=False)
with gr.Row():
submit_btn = gr.Button(value = "submit",elem_id="erase-btn").style(
margin=True,
rounded=(True, True, True, True),
)
with gr.Row(elem_id='tab_demo', visible=True).style(height=5):
tab_demo = gr.TabbedInterface(tab_actions, tab_titles)
submit_btn.click(fn=infer, inputs=[prompt_input0], outputs=[prompt_input1])
# prompt_input = gr.Textbox(lines=4, label="Input prompt")
# tab_demo = gr.TabbedInterface([sd15_demo, sd20_demo, openjourney_demo], ["stable-diffusion-v1-5", "stable-diffusion-2", "openjourney"])
# demo = gr.Interface(fn=infer,
# inputs=[prompt_input],
# outputs=[tab_demo],
# )
if __name__ == "__main__":
demo.launch()
# import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
# from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy
# import gradio as gr
# import PIL.Image
# import numpy as np
# import random
# import torch
# import subprocess
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # print('Using device:', device)
# HF_TOKEN_SD=os.environ.get('HF_TOKEN_SD')
# if 0==0:
# model_id = "runwayml/stable-diffusion-v1-5"
# model_id = "prompthero/openjourney"
# # pipeClass = StableDiffusionImg2ImgPipeline
# pipeClass = StableDiffusionPipeline
# className = pipeClass.__name__
# if className == 'StableDiffusionInpaintPipeline':
# model_id = "runwayml/stable-diffusion-inpainting"
# sd_pipe = pipeClass.from_pretrained(
# model_id,
# # revision="fp16",
# torch_dtype=torch.float16,
# # use_auth_token=HF_TOKEN_SD
# ) # .to(device)
# def predict(prompt, steps=100, seed=42, guidance_scale=6.0):
# #torch.cuda.empty_cache()
# # print(subprocess.check_output(["nvidia-smi"], stderr=subprocess.STDOUT).decode("utf8"))
# generator = torch.manual_seed(seed)
# images = sd_pipe([prompt],
# generator=generator,
# num_inference_steps=steps,
# eta=0.3,
# guidance_scale=guidance_scale)["sample"]
# # print(subprocess.check_output(["nvidia-smi"], stderr=subprocess.STDOUT).decode("utf8"))
# return images[0]
# random_seed = random.randint(0, 2147483647)
# gr.Interface(
# predict,
# inputs=[
# gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat'),
# gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
# gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
# gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
# ],
# outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
# css="#output_image{width: 256px}",
# title="Text-to-Image_Latent_Diffusion",
# # description="This Spaces contains a text-to-image Latent Diffusion process for the <a href=\"https://huggingface.co/CompVis/ldm-text2im-large-256\">ldm-text2im-large-256</a> model by <a href=\"https://huggingface.co/CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library and you can check how the code works here. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co/spaces/multimodalart/latentdiffusion\">main Spaces</a>.",
# ).launch()