File size: 33,581 Bytes
6ebf426
 
 
 
 
 
 
 
 
 
 
2d06d0e
6ebf426
144e87a
6ebf426
ac8e861
 
6ebf426
 
 
 
2d06d0e
6ebf426
 
 
2d06d0e
 
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
5b98825
 
6ebf426
 
5b98825
 
 
6ebf426
 
 
 
 
 
2d06d0e
 
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
 
 
 
 
 
ffb4b87
 
144e87a
 
 
 
 
 
 
 
 
 
ffb4b87
 
 
 
144e87a
 
 
 
 
 
be26700
 
 
144e87a
 
 
 
 
 
 
 
 
 
 
be26700
 
 
 
144e87a
 
 
 
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
 
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
 
 
 
 
 
 
 
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144e87a
f4725ed
693e74a
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d06d0e
6ebf426
 
 
2d06d0e
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
be26700
 
6ebf426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26700
 
6ebf426
 
 
 
 
 
144e87a
 
 
 
 
 
 
 
ffb4b87
144e87a
ffb4b87
 
144e87a
 
 
 
 
 
 
 
 
ffb4b87
144e87a
ffb4b87
 
144e87a
6ebf426
 
 
 
 
 
 
 
 
 
988da9d
144e87a
 
be26700
144e87a
 
be26700
144e87a
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebf426
be26700
6ebf426
be26700
6ebf426
 
 
144e87a
 
6ebf426
adbaefa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#%%
import gradio as gr
import time
import sys
import os
import torch
import torch.backends.cudnn as cudnn
import numpy as np
import json 
import networkx as nx
import spacy
# os.system("python -m spacy download en-core-web-sm")
import pickle as pkl
from tqdm import tqdm
#%%
# please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
# torch.loa
from torch.nn.modules.loss import CrossEntropyLoss
from transformers import AutoTokenizer
from transformers import BioGptForCausalLM, BartForConditionalGeneration

from server import server_utils

import Parameters
from Openai.chat import generate_abstract
from DiseaseSpecific import utils, attack
from DiseaseSpecific.attack import calculate_edge_bound, get_model_loss_without_softmax


specific_model =  None

def capitalize_the_first_letter(s):
    return s[0].upper() + s[1:]

parser = utils.get_argument_parser()
parser = utils.add_attack_parameters(parser)
parser.add_argument('--init-mode', type = str, default='single', help = 'How to select target nodes') # 'single' for case study 
args = parser.parse_args()
args = utils.set_hyperparams(args)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")    
args.device = device
args.device1 = device
if torch.cuda.device_count() >= 2:
    args.device = "cuda:0"
    args.device1 = "cuda:1"

utils.seed_all(args.seed)
np.set_printoptions(precision=5)
cudnn.benchmark = False

model_name = '{0}_{1}_{2}_{3}_{4}'.format(args.model, args.embedding_dim, args.input_drop, args.hidden_drop, args.feat_drop)
model_path = 'DiseaseSpecific/saved_models/{0}_{1}.model'.format(args.data, model_name)
data_path = os.path.join('DiseaseSpecific/processed_data', args.data)
data  = utils.load_data(os.path.join(data_path, 'all.txt'))

n_ent, n_rel, ent_to_id, rel_to_id = utils.generate_dicts(data_path)
with open(os.path.join(data_path, 'filter.pickle'), 'rb') as fl:
    filters = pkl.load(fl)
with open(os.path.join(data_path, 'entityid_to_nodetype.json'), 'r') as fl:
    entityid_to_nodetype = json.load(fl)
with open(os.path.join(data_path, 'edge_nghbrs.pickle'), 'rb') as fl:
    edge_nghbrs = pkl.load(fl)
with open(os.path.join(data_path, 'disease_meshid.pickle'), 'rb') as fl:
    disease_meshid = pkl.load(fl)
with open(os.path.join(data_path, 'entities_dict.json'), 'r') as fl:
    entity_to_id = json.load(fl)
with open(Parameters.GNBRfile+'entity_raw_name', 'rb') as fl:
    entity_raw_name = pkl.load(fl)
with open(os.path.join(data_path, 'entities_reverse_dict.json'), 'r') as fl:
    id_to_entity = json.load(fl)
id_to_meshid = id_to_entity.copy()
with open(Parameters.GNBRfile+'retieve_sentence_through_edgetype', 'rb') as fl:
    retieve_sentence_through_edgetype = pkl.load(fl)
with open(Parameters.GNBRfile+'raw_text_of_each_sentence', 'rb') as fl:
    raw_text_sen = pkl.load(fl)
with open(Parameters.UMLSfile+'drug_term', 'rb') as fl:
    drug_term = pkl.load(fl)

gallery_specific_target_path = os.path.join(data_path, 'DD_target_distmult_GNBR_random_50_exists:False_single.txt')
gallery_specific_link_path = 'DiseaseSpecific/attack_results/GNBR/cos_distmult_random_50_exists:False_20_quadratic_single_0.5.txt' 
gallery_specific_text_path = 'DiseaseSpecific/generate_abstract/random_0.5_bioBART_finetune.json'
gallery_agnostic_target_path = 'DiseaseAgnostic/processed_data/target_0.7random.pkl'
gallery_agnostic_link_path = 'DiseaseAgnostic/processed_data/attack_edge_distmult_0.7random.pkl'
gallery_agnostic_text_path = 'DiseaseAgnostic/generate_abstract/random0.7_bioBART_finetune.json'
gallery_specific_chat_path = 'DiseaseSpecific/generate_abstract/random_0.5_chat.json'
gallery_agnostic_chat_path = 'DiseaseAgnostic/generate_abstract/random0.7_chat.json'
gallery_specific_target = utils.load_data(gallery_specific_target_path, drop=False)
gallery_specific_link = utils.load_data(gallery_specific_link_path, drop=False)
with open(gallery_specific_text_path, 'r') as fl:
    gallery_specific_text = json.load(fl)
with open(gallery_agnostic_target_path, 'rb') as fl:
    gallery_agnostic_target = pkl.load(fl)
with open(gallery_agnostic_link_path, 'rb') as fl:
    gallery_agnostic_link = pkl.load(fl)
with open(gallery_agnostic_text_path, 'r') as fl:
    gallery_agnostic_text = json.load(fl)
with open(gallery_specific_chat_path, 'r') as fl:
    gallery_specific_chat = json.load(fl)
with open(gallery_agnostic_chat_path, 'r') as fl:
    gallery_agnostic_chat = json.load(fl)

gallery_specific_list = []
gallery_specific_target_dict = {}
for i, (s, r, o) in enumerate(gallery_specific_target):
    s = id_to_meshid[str(s)]
    o = id_to_meshid[str(o)]
    k = f'{gallery_specific_link[i][0]}_{gallery_specific_link[i][1]}_{gallery_specific_link[i][2]}_{i}'
    if 'sorry' in gallery_specific_text[k]['out'] or 'Sorry' in gallery_specific_text[k]['out']:
        continue
    target_name = f'{capitalize_the_first_letter(entity_raw_name[s])} - {capitalize_the_first_letter(entity_raw_name[o])}'
    if target_name not in gallery_specific_target_dict:
        gallery_specific_target_dict[target_name] = i
        gallery_specific_list.append(target_name)
gallery_specific_list.sort()

gallery_agnostic_list = []
gallery_agnostic_target_dict = {}

for i, iid in enumerate(gallery_agnostic_target):
    target_name = capitalize_the_first_letter(entity_raw_name[id_to_meshid[str(iid)]])

    k = f'{gallery_agnostic_link[i][0]}_{gallery_agnostic_link[i][1]}_{gallery_agnostic_link[i][2]}_{i}'
    if 'sorry' in gallery_agnostic_text[k]['out'] or 'Sorry' in gallery_agnostic_text[k]['out']:
        continue
    if target_name not in gallery_agnostic_target_dict:
        gallery_agnostic_target_dict[target_name] = i
        gallery_agnostic_list.append(target_name)
gallery_agnostic_list.sort()
drug_dict = {}
disease_dict = {}
for k, v in entity_raw_name.items():
    #chemical_mesh:c050048
    tp = k.split('_')[0]
    v = capitalize_the_first_letter(v)
    if len(v) <= 2:
        continue
    if tp == 'chemical':
        drug_dict[v] = k
    elif tp == 'disease':
        disease_dict[v] = k

drug_list = list(drug_dict.keys())
disease_list = list(disease_dict.keys())
drug_list.sort()
disease_list.sort()
init_mask = np.asarray([0] * n_ent).astype('int64')
init_mask = (init_mask == 1)
for k, v in filters.items():
    for kk, vv in v.items():
        tmp = init_mask.copy()
        tmp[np.asarray(vv)] = True
        t = torch.ByteTensor(tmp).to(args.device)
        filters[k][kk] = t

gpt_tokenizer = AutoTokenizer.from_pretrained('microsoft/biogpt')
gpt_tokenizer.pad_token = gpt_tokenizer.eos_token
gpt_model = BioGptForCausalLM.from_pretrained('microsoft/biogpt', pad_token_id=gpt_tokenizer.eos_token_id)
gpt_model.eval()

specific_model = utils.load_model(model_path, args, n_ent, n_rel, args.device)
specific_model.eval()
divide_bound, data_mean, data_std = attack.calculate_edge_bound(data, specific_model, args.device, n_ent)

nlp = spacy.load("en_core_web_sm")

bart_model = BartForConditionalGeneration.from_pretrained('GanjinZero/biobart-large')
bart_model.eval()
bart_tokenizer = AutoTokenizer.from_pretrained('GanjinZero/biobart-large')

def tune_chatgpt(draft, attack_data, dpath):
    dpath_i = 0
    bart_model.to(args.device1)
    for i, v in enumerate(draft):

        input = v['in'].replace('\n', '')
        output = v['out'].replace('\n', '')
        s, r, o = attack_data[i]

        path_text = dpath[dpath_i].replace('\n', '')
        dpath_i += 1
        text_s = entity_raw_name[id_to_meshid[s]]
        text_o = entity_raw_name[id_to_meshid[o]]

        doc = nlp(output)
        words= input.split(' ')
        tokenized_sens = [sen for sen in doc.sents]
        sens = np.array([sen.text for sen in doc.sents])

        checkset = set([text_s, text_o])
        e_entity = set(['start_entity', 'end_entity'])
        for path in path_text.split(' '):
            a, b, c = path.split('|')
            if a not in e_entity:
                checkset.add(a)
            if c not in e_entity:
                checkset.add(c)
        vec = []
        l = 0
        while(l < len(words)):
            bo =False
            for j in range(len(words), l, -1): # reversing is important !!!
                cc = ' '.join(words[l:j])
                if (cc in checkset):
                    vec += [True] * (j-l)
                    l = j
                    bo = True
                    break
            if not bo:
                vec.append(False)
                l += 1
        vec, span = server_utils.find_mini_span(vec, words, checkset)
        # vec = np.vectorize(lambda x: x in checkset)(words)
        vec[-1] = True
        prompt = []
        mask_num = 0
        for j, bo in enumerate(vec):
            if not bo:
                mask_num += 1
            else:
                if mask_num > 0:
                    # mask_num = mask_num // 3 # span length ~ poisson distribution (lambda = 3)
                    mask_num = max(mask_num, 1)
                    mask_num= min(8, mask_num)
                    prompt += ['<mask>'] * mask_num
                prompt.append(words[j])
                mask_num = 0
        prompt = ' '.join(prompt)
        Text = []
        Assist = []

        for j in range(len(sens)):
            Bart_input = list(sens[:j]) + [prompt] +list(sens[j+1:])
            assist = list(sens[:j]) + [input] +list(sens[j+1:])
            Text.append(' '.join(Bart_input))
            Assist.append(' '.join(assist))
        
        for j in range(len(sens)):
            Bart_input = server_utils.mask_func(tokenized_sens[:j]) + [input] + server_utils.mask_func(tokenized_sens[j+1:])
            assist = list(sens[:j]) + [input] +list(sens[j+1:])
            Text.append(' '.join(Bart_input))
            Assist.append(' '.join(assist))

        batch_size = 8
        Outs = []
        for l in tqdm(range(0, len(Text), batch_size)):
            R = min(len(Text), l + batch_size)
            A = bart_tokenizer(Text[l:R],
            truncation = True,
            padding = True,
            max_length = 1024,
            return_tensors="pt")
            input_ids = A['input_ids'].to(args.device1)
            attention_mask = A['attention_mask'].to(args.device1)
            aaid = bart_model.generate(input_ids, attention_mask = attention_mask, num_beams = 5, max_length = 1024)
            outs = bart_tokenizer.batch_decode(aaid, skip_special_tokens=True, clean_up_tokenization_spaces=False)
            Outs += outs
        bart_model.to('cpu')
        return span, prompt, Outs, Text, Assist
    
def score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, v):

    criterion = CrossEntropyLoss(reduction="none")
    text_s = entity_raw_name[id_to_meshid[str(s)]]
    text_o = entity_raw_name[id_to_meshid[str(o)]]

    sen_list = [server_utils.process(text) for text in sen_list]
    path_text = dpath[0].replace('\n', '')

    checkset = set([text_s, text_o])
    e_entity = set(['start_entity', 'end_entity'])
    for path in path_text.split(' '):
        a, b, c = path.split('|')
        if a not in e_entity:
            checkset.add(a)
        if c not in e_entity:
            checkset.add(c)

    input = v['in'].replace('\n', '')
    output = v['out'].replace('\n', '')

    doc = nlp(output)
    gpt_sens = [sen.text for sen in doc.sents]
    assert len(gpt_sens) == len(sen_list) // 2

    word_sets = []
    for sen in gpt_sens:
        word_sets.append(set(sen.split(' ')))

    def sen_align(word_sets, modified_word_sets):
        
        l = 0
        while(l < len(modified_word_sets)):
            if len(word_sets[l].intersection(modified_word_sets[l])) > len(word_sets[l]) * 0.8:
                l += 1
            else:
                break
        if l == len(modified_word_sets):
            return -1, -1, -1, -1
        r = l + 1
        r1 = None
        r2 = None
        for pos1 in range(r, len(word_sets)):
            for pos2 in range(r, len(modified_word_sets)):
                if len(word_sets[pos1].intersection(modified_word_sets[pos2])) > len(word_sets[pos1]) * 0.8:
                    r1 = pos1
                    r2 = pos2
                    break
            if r1 is not None:
                break
        if r1 is None:
            r1 = len(word_sets)
            r2 = len(modified_word_sets)
        return l, r1, l, r2

    replace_sen_list = []
    boundary = []
    assert len(sen_list) % 2 == 0
    for j in range(len(sen_list) // 2):
        doc = nlp(sen_list[j])
        sens = [sen.text for sen in doc.sents]
        modified_word_sets = [set(sen.split(' ')) for sen in sens]
        l1, r1, l2, r2 = sen_align(word_sets, modified_word_sets)
        boundary.append((l1, r1, l2, r2))
        if l1 == -1:
            replace_sen_list.append(sen_list[j])
            continue
        check_text = ' '.join(sens[l2: r2])
        replace_sen_list.append(' '.join(gpt_sens[:l1] + [check_text] + gpt_sens[r1:]))
    sen_list = replace_sen_list + sen_list[len(sen_list) // 2:]

    gpt_model.to(args.device1)
    sen_list.append(output)
    tokens = gpt_tokenizer( sen_list,
                        truncation = True,
                        padding = True,
                        max_length = 1024,
                        return_tensors="pt")
    target_ids = tokens['input_ids'].to(args.device1)
    attention_mask = tokens['attention_mask'].to(args.device1)
    L = len(sen_list)
    ret_log_L = []
    for l in tqdm(range(0, L, 5)):
        R = min(L, l + 5)
        target = target_ids[l:R, :]
        attention = attention_mask[l:R, :]
        outputs = gpt_model(input_ids = target,
                        attention_mask = attention,
                        labels = target)
        logits = outputs.logits
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = target[..., 1:].contiguous()
        Loss = criterion(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1))
        Loss = Loss.view(-1, shift_logits.shape[1])
        attention = attention[..., 1:].contiguous()
        log_Loss = (torch.mean(Loss * attention.float(), dim = 1) / torch.mean(attention.float(), dim = 1))
        ret_log_L.append(log_Loss.detach())
    log_Loss = torch.cat(ret_log_L, -1).cpu().numpy()
    gpt_model.to('cpu')
    p = np.argmin(log_Loss)
    return sen_list[p]

def generate_template_for_triplet(attack_data):

    criterion = CrossEntropyLoss(reduction="none")
    gpt_model.to(args.device1)
    print('Generating template ...')

    GPT_batch_size = 8
    single_sentence = []
    test_text = []
    test_dp = []
    test_parse = []
    s, r, o = attack_data[0]
    dependency_sen_dict = retieve_sentence_through_edgetype[int(r)]['manual']
    candidate_sen = []
    Dp_path = []
    L = len(dependency_sen_dict.keys())
    bound = 500 // L
    if bound == 0:
        bound = 1
    for dp_path, sen_list in dependency_sen_dict.items():
        if len(sen_list) > bound:
            index = np.random.choice(np.array(range(len(sen_list))), bound, replace=False)
            sen_list = [sen_list[aa] for aa in index]
        ssen_list = []
        for aa in range(len(sen_list)):
            paper_id, sen_id = sen_list[aa]
            if raw_text_sen[paper_id][sen_id]['start_formatted'] == raw_text_sen[paper_id][sen_id]['end_formatted']:
                continue
            ssen_list.append(sen_list[aa])
        sen_list = ssen_list
        candidate_sen += sen_list
        Dp_path += [dp_path] * len(sen_list)

    text_s = entity_raw_name[id_to_meshid[s]]
    text_o = entity_raw_name[id_to_meshid[o]]
    candidate_text_sen = []
    candidate_ori_sen = []
    candidate_parse_sen = []

    for paper_id, sen_id in candidate_sen:
        sen = raw_text_sen[paper_id][sen_id]
        text = sen['text']
        candidate_ori_sen.append(text)
        ss = sen['start_formatted']
        oo = sen['end_formatted']
        text = text.replace('-LRB-', '(')
        text = text.replace('-RRB-', ')')
        text = text.replace('-LSB-', '[')
        text = text.replace('-RSB-', ']')
        text = text.replace('-LCB-', '{')
        text = text.replace('-RCB-', '}')
        parse_text = text
        parse_text = parse_text.replace(ss, text_s.replace(' ', '_'))
        parse_text = parse_text.replace(oo, text_o.replace(' ', '_'))
        text = text.replace(ss, text_s)
        text = text.replace(oo, text_o)
        text = text.replace('_', ' ')
        candidate_text_sen.append(text)
        candidate_parse_sen.append(parse_text)
    tokens = gpt_tokenizer( candidate_text_sen,
                        truncation = True,
                        padding = True,
                        max_length = 300,
                        return_tensors="pt")
    target_ids = tokens['input_ids'].to(args.device1)
    attention_mask = tokens['attention_mask'].to(args.device1)

    L = len(candidate_text_sen)
    assert L > 0
    ret_log_L = []
    for l in tqdm(range(0, L, GPT_batch_size)):
        R = min(L, l + GPT_batch_size)
        target = target_ids[l:R, :]
        attention = attention_mask[l:R, :]
        outputs = gpt_model(input_ids = target,
                        attention_mask = attention,
                        labels = target)
        logits = outputs.logits
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = target[..., 1:].contiguous()
        Loss = criterion(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1))
        Loss = Loss.view(-1, shift_logits.shape[1])
        attention = attention[..., 1:].contiguous()
        log_Loss = (torch.mean(Loss * attention.float(), dim = 1) / torch.mean(attention.float(), dim = 1))
        ret_log_L.append(log_Loss.detach())
    
    ret_log_L = list(torch.cat(ret_log_L, -1).cpu().numpy())
    sen_score = list(zip(candidate_text_sen, ret_log_L, candidate_ori_sen, Dp_path, candidate_parse_sen))
    sen_score.sort(key = lambda x: x[1])
    Len = len(sen_score)
    p = 0
    if Len > 10:
        p = np.random.choice(np.array(range(Len // 10)), 1)[0]
    test_text.append(sen_score[p][2])
    test_dp.append(sen_score[p][3])
    test_parse.append(sen_score[p][4])
    single_sentence.append(sen_score[p][0])

    gpt_model.to('cpu')
    return single_sentence, test_text, test_dp, test_parse


meshids = list(id_to_meshid.values())
cal = {
    'chemical' : 0,
    'disease' : 0,
    'gene' : 0
}
for meshid in meshids:
    cal[meshid.split('_')[0]] += 1

def check_reasonable(s, r, o):

    train_trip = np.asarray([[s, r, o]])
    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
    edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze()
    # edge_losse_log_prob = torch.log(F.softmax(-edge_loss, dim = -1))

    edge_loss = edge_loss.item() 
    edge_loss = (edge_loss - data_mean) / data_std
    edge_losses_prob =  1 / ( 1 + np.exp(edge_loss - divide_bound) )
    bound = 1 - args.reasonable_rate

    return (edge_losses_prob > bound),  edge_losses_prob

edgeid_to_edgetype = {}
edgeid_to_reversemask = {}
for k, id_list in Parameters.edge_type_to_id.items():
    for iid, mask in zip(id_list, Parameters.reverse_mask[k]):
        edgeid_to_edgetype[str(iid)] = k
        edgeid_to_reversemask[str(iid)] = mask
reverse_tot = 0
G = nx.DiGraph()
for s, r, o in data:
    assert id_to_meshid[s].split('_')[0] == edgeid_to_edgetype[r].split('-')[0]
    if edgeid_to_reversemask[r] == 1:
        reverse_tot += 1
        G.add_edge(int(o), int(s))
    else:
        G.add_edge(int(s), int(o))

print('Page ranking ...')
pagerank_value_1 = nx.pagerank(G, max_iter = 200, tol=1.0e-7) 

drug_meshid = []
drug_list = []
for meshid, nm in entity_raw_name.items():
    if nm.lower() in drug_term and meshid.split('_')[0] == 'chemical':
        drug_meshid.append(meshid)
        drug_list.append(capitalize_the_first_letter(nm))
drug_list = list(set(drug_list))
drug_list.sort()
drug_meshid = set(drug_meshid)
pr = list(pagerank_value_1.items())
pr.sort(key = lambda x: x[1])
sorted_rank = { 'chemical' : [],
                'gene' : [],
                'disease': [],
                'merged' : []}
for iid, score in pr:
    tp = id_to_meshid[str(iid)].split('_')[0]
    if tp == 'chemical':
        if id_to_meshid[str(iid)] in drug_meshid:
            sorted_rank[tp].append((iid, score))
    else:
        sorted_rank[tp].append((iid, score))
        sorted_rank['merged'].append((iid, score))
llen = len(sorted_rank['merged']) 
sorted_rank['merged'] = sorted_rank['merged'][llen * 3 // 4 : ]

def generate_specific_attack_edge(start_entity, end_entity):

    if device == torch.device('cpu'):
        print('We can just set the malicious link equals to the target link, since the generation of malicious link is too slow on cpu')
        return entity_to_id[drug_dict[start_entity]], '10', entity_to_id[disease_dict[end_entity]]
    global specific_model
        
    specific_model.to(device)
    strat_meshid = drug_dict[start_entity]
    end_meshid = disease_dict[end_entity]
    start_entity = entity_to_id[strat_meshid]
    end_entity = entity_to_id[end_meshid]
    target_data = np.array([[start_entity, '10', end_entity]])
    neighbors = attack.generate_nghbrs(target_data, edge_nghbrs, args)
    ret = f'Generating malicious link for {strat_meshid}_treatment_{end_meshid}', 'Generation malicious text ...'
    param_optimizer = list(specific_model.named_parameters())
    param_influence = []
    for n,p in param_optimizer:
        param_influence.append(p)
    len_list = []
    for v in neighbors.values():
        len_list.append(len(v))
    mean_len = np.mean(len_list)
    attack_trip, score_record = attack.addition_attack(param_influence, args.device, n_rel, data, target_data, neighbors, specific_model, filters, entityid_to_nodetype, args.attack_batch_size, args, load_Record = args.load_existed, divide_bound = divide_bound, data_mean = data_mean, data_std = data_std, cache_intermidiate = False)
    s, r, o = attack_trip[0]
    specific_model.to('cpu')
    return s, r, o

def generate_agnostic_attack_edge(targets):

    specific_model.to(device)
    attack_edge_list = []
    for target in targets:
        candidate_list = []
        score_list = []
        loss_list = []
        main_dict = {}
        for iid, score in sorted_rank['merged']:
            a = G.number_of_edges(iid, target) + 1
            if a != 1:
                continue
            b = G.out_degree(iid) + 1
            tp = id_to_meshid[str(iid)].split('_')[0]
            edge_losses = []
            r_list = []
            for r in range(len(edgeid_to_edgetype)):
                r_tp = edgeid_to_edgetype[str(r)]
                if (edgeid_to_reversemask[str(r)] == 0 and r_tp.split('-')[0] == tp and r_tp.split('-')[1] == 'chemical'):
                    train_trip = np.array([[iid, r, target]])
                    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
                    edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze()
                    edge_losses.append(edge_loss.unsqueeze(0).detach())
                    r_list.append(r)
                elif(edgeid_to_reversemask[str(r)] == 1 and r_tp.split('-')[0] == 'chemical' and r_tp.split('-')[1] == tp):
                    train_trip = np.array([[iid, r, target]]) # add batch dim
                    train_trip = torch.from_numpy(train_trip.astype('int64')).to(device)
                    edge_loss = get_model_loss_without_softmax(train_trip, specific_model, device).squeeze()
                    edge_losses.append(edge_loss.unsqueeze(0).detach())
                    r_list.append(r)
            if len(edge_losses)==0:
                continue
            min_index = torch.argmin(torch.cat(edge_losses, dim = 0))
            r = r_list[min_index]
            r_tp = edgeid_to_edgetype[str(r)]
            
            old_len = len(candidate_list)
            if (edgeid_to_reversemask[str(r)] == 0):
                bo, prob = check_reasonable(iid, r, target)
                if bo:
                    candidate_list.append((iid, r, target))
                    score_list.append(score * a / b)
                    loss_list.append(edge_losses[min_index].item())
            if (edgeid_to_reversemask[str(r)] == 1):
                bo, prob = check_reasonable(target, r, iid)
                if bo:
                    candidate_list.append((target, r, iid))
                    score_list.append(score * a / b)
                    loss_list.append(edge_losses[min_index].item())
        
        if len(candidate_list) == 0:
            if args.added_edge_num == '' or int(args.added_edge_num) == 1:
                attack_edge_list.append((-1,-1,-1))
            else:
                attack_edge_list.append([])
            continue
        norm_score = np.array(score_list) / np.sum(score_list)
        norm_loss = np.exp(-np.array(loss_list)) / np.sum(np.exp(-np.array(loss_list)))

        total_score = norm_score * norm_loss
        total_score_index = list(zip(range(len(total_score)), total_score))
        total_score_index.sort(key = lambda x: x[1], reverse = True)

        total_index = np.argsort(total_score)[::-1]
        assert total_index[0] == total_score_index[0][0]
        # find rank of main index 
        
        max_index = np.argmax(total_score)
        assert max_index == total_score_index[0][0]

        tmp_add = []
        add_num = 1
        if args.added_edge_num == '' or int(args.added_edge_num) == 1:
            attack_edge_list.append(candidate_list[max_index])
        else:
            add_num = int(args.added_edge_num)
            for i in range(add_num):
                tmp_add.append(candidate_list[total_score_index[i][0]])
            attack_edge_list.append(tmp_add)
    specific_model.to('cpu')
    return attack_edge_list[0]

def specific_func(start_entity, end_entity):
    
    args.reasonable_rate = 0.5
    s, r, o = generate_specific_attack_edge(start_entity, end_entity)
    if int(s) == -1:
        return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'
    s_name = entity_raw_name[id_to_entity[str(s)]]
    r_name = Parameters.edge_id_to_type[int(r)].split(':')[1]
    o_name = entity_raw_name[id_to_entity[str(o)]]
    attack_data = np.array([[s, r, o]])
    path_list = []
    with open(f'DiseaseSpecific/generate_abstract/path/random_{args.reasonable_rate}_path.json', 'r') as fl:
        for line in fl.readlines():
            line.replace('\n', '')
            path_list.append(line)
    with open(f'DiseaseSpecific/generate_abstract/random_{args.reasonable_rate}_sentence.json', 'r') as fl:
        sentence_dict = json.load(fl)
    dpath = []
    for k, v in sentence_dict.items():
        if f'{s}_{r}_{o}' in k:
            single_sentence = [v]
            dpath = [path_list[int(k.split('_')[-1])]]
            break
    if len(dpath) == 0:
        single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data)
    elif not(s_name in single_sentence[0] and o_name in single_sentence[0]):
        single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data)

    print('Using ChatGPT for generation...')
    draft = generate_abstract(single_sentence[0])
    if 'sorry' in draft or 'Sorry' in draft:
        return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'

    print('Using BioBART for tuning...')
    span , prompt , sen_list, BART_in, Assist = tune_chatgpt([{'in':single_sentence[0], 'out': draft}], attack_data, dpath)
    text = score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, {'in':single_sentence[0], 'out': draft})
    return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text)
        #   f'The sentence is: {single_sentence[0]}\n The path is: {dpath[0]}' 

def agnostic_func(agnostic_entity):

    args.reasonable_rate = 0.7
    target_id = entity_to_id[drug_dict[agnostic_entity]]
    s = generate_agnostic_attack_edge([int(target_id)])
    if len(s) == 0:
        return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'
    if int(s[0]) == -1:
        return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'
    s, r, o = str(s[0]), str(s[1]), str(s[2])
    s_name = entity_raw_name[id_to_entity[str(s)]]
    r_name = Parameters.edge_id_to_type[int(r)].split(':')[1]
    o_name = entity_raw_name[id_to_entity[str(o)]]

    attack_data = np.array([[s, r, o]])
    single_sentence, _, dpath, _ = generate_template_for_triplet(attack_data)

    print('Using ChatGPT for generation...')
    draft = generate_abstract(single_sentence[0])
    if 'sorry' in draft or 'Sorry' in draft:
        return 'All candidate links are filterd out by defender, so no malicious link can be generated', 'No malicious abstract can be generated'

    print('Using BioBART for tuning...')
    span , prompt , sen_list, BART_in, Assist = tune_chatgpt([{'in':single_sentence[0], 'out': draft}], attack_data, dpath)
    text = score_and_select(s, r, o, span , prompt , sen_list, BART_in, Assist, dpath, {'in':single_sentence[0], 'out': draft})
    return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text)

def gallery_specific_func(specific_target):
    index = gallery_specific_target_dict[specific_target]
    s, r, o = gallery_specific_link[index]
    s_name = entity_raw_name[id_to_entity[str(s)]]
    r_name = Parameters.edge_id_to_type[int(r)].split(':')[1]
    o_name = entity_raw_name[id_to_entity[str(o)]]

    k = f'{s}_{r}_{o}_{index}'
    inn = gallery_specific_text[k]['in']
    text = gallery_specific_text[k]['out']
    if inn in text:
        text = gallery_specific_chat[k]['out']
    return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text)

def gallery_agnostic_func(agnostic_target):
    index = gallery_agnostic_target_dict[agnostic_target]
    s, r, o = gallery_agnostic_link[index]
    s_name = entity_raw_name[id_to_entity[str(s)]]
    r_name = Parameters.edge_id_to_type[int(r)].split(':')[1]
    o_name = entity_raw_name[id_to_entity[str(o)]]
    k = f'{s}_{r}_{o}_{index}'
    inn = gallery_agnostic_text[k]['in']
    text = gallery_agnostic_text[k]['out']
    if inn in text:
        text = gallery_agnostic_chat[k]['out']
    return f'{capitalize_the_first_letter(s_name)} - {capitalize_the_first_letter(r_name)} - {capitalize_the_first_letter(o_name)}', server_utils.process(text)
#%%
with gr.Blocks() as demo:

    with gr.Column():
        gr.Markdown("Poison scitific knowledge with Scorpius")

        # with gr.Column():
        with gr.Row():
            # Center
            with gr.Column():
                gr.Markdown("Select your poisoning target")
                with gr.Tab('Gallery'):
                    with gr.Tab('Target specific'):
                        specific_target = gr.Dropdown(gallery_specific_list, label="Promoting drug and target disease")
                        gallery_specific_generation_button = gr.Button('Poison!')
                    with gr.Tab('Target agnostic'):
                        agnostic_target = gr.Dropdown(gallery_agnostic_list, label="Promoting drug")
                        gallery_agnostic_generation_button = gr.Button('Poison!')

                with gr.Tab('Poison'):
                    with gr.Tab('Target specific'):
                        with gr.Column():
                            with gr.Row():
                                start_entity = gr.Dropdown(drug_list, label="Promoting drug")
                                end_entity = gr.Dropdown(disease_list, label="Target disease")
                            if device == torch.device('cpu'):
                                gr.Markdown("Since the project is currently running on the CPU, we directly treat the malicious link as equivalent to the poisoning target, to accelerate the generation process.")
                            specific_generation_button = gr.Button('Poison!')
                    with gr.Tab('Target agnostic'):
                        agnostic_entity = gr.Dropdown(drug_list, label="Promoting drug")
                        agnostic_generation_button = gr.Button('Poison!')
            with gr.Column():
                gr.Markdown("Generation")
                malicisous_link = gr.Textbox(lines=1, label="Malicious link")
                # gr.Markdown("Malicious text")
                malicious_text = gr.Textbox(label="Malicious text", lines=5)
    specific_generation_button.click(specific_func, inputs=[start_entity, end_entity], outputs=[malicisous_link, malicious_text])
    agnostic_generation_button.click(agnostic_func, inputs=[agnostic_entity], outputs=[malicisous_link, malicious_text])
    gallery_specific_generation_button.click(gallery_specific_func, inputs=[specific_target], outputs=[malicisous_link, malicious_text])
    gallery_agnostic_generation_button.click(gallery_agnostic_func, inputs=[agnostic_target], outputs=[malicisous_link, malicious_text])

# demo.launch(server_name="0.0.0.0", server_port=8000, debug=False)
demo.launch()