Spaces:
Running
Running
yjwtheonly
commited on
Commit
·
f402b50
1
Parent(s):
ab18435
modifications
Browse files
DiseaseAgnostic/edge_to_abstract.py
CHANGED
@@ -162,51 +162,12 @@ if args.mode == 'sentence':
|
|
162 |
|
163 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}_sentence.json', 'w') as fl:
|
164 |
json.dump(single_sentence, fl, indent=4)
|
165 |
-
|
166 |
-
# fl.write('\n'.join(test_text))
|
167 |
-
# with open('generate_abstract/dp.txt', 'w') as fl:
|
168 |
-
# fl.write('\n'.join(test_dp))
|
169 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_path.json', 'w') as fl:
|
170 |
fl.write('\n'.join(test_dp))
|
171 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_temp.json', 'w') as fl:
|
172 |
fl.write('\n'.join(test_text))
|
173 |
|
174 |
-
elif args.mode == 'biogpt':
|
175 |
-
pass
|
176 |
-
# from biogpt_generate import GPT_eval
|
177 |
-
# import spacy
|
178 |
-
|
179 |
-
# model = GPT_eval(args.seed)
|
180 |
-
|
181 |
-
# nlp = spacy.load("en_core_web_sm")
|
182 |
-
# with open(f'generate_abstract/{args.target_split}_{args.reasonable_rate}_sentence.json', 'r') as fl:
|
183 |
-
# data = json.load(fl)
|
184 |
-
|
185 |
-
# KK = []
|
186 |
-
# input = []
|
187 |
-
# for i,(k, v) in enumerate(data.items()):
|
188 |
-
# KK.append(k)
|
189 |
-
# input.append(v)
|
190 |
-
# output = model.eval(input)
|
191 |
-
|
192 |
-
# ret = {}
|
193 |
-
# for i, o in enumerate(output):
|
194 |
-
|
195 |
-
# o = o.replace('<|abstract|>', '')
|
196 |
-
# doc = nlp(o)
|
197 |
-
# sen_list = []
|
198 |
-
# sen_set = set()
|
199 |
-
# for sen in doc.sents:
|
200 |
-
# txt = sen.text
|
201 |
-
# if not (txt.lower() in sen_set):
|
202 |
-
# sen_set.add(txt.lower())
|
203 |
-
# sen_list.append(txt)
|
204 |
-
# O = ' '.join(sen_list)
|
205 |
-
# ret[KK[i]] = {'in' : input[i], 'out' : O}
|
206 |
-
|
207 |
-
# with open(f'generate_abstract/{args.target_split}_{args.reasonable_rate}_biogpt.json', 'w') as fl:
|
208 |
-
# json.dump(ret, fl, indent=4)
|
209 |
-
|
210 |
elif args.mode == 'finetune':
|
211 |
|
212 |
import spacy
|
@@ -260,34 +221,6 @@ elif args.mode == 'finetune':
|
|
260 |
vec[i] = True
|
261 |
return vec, span
|
262 |
|
263 |
-
# def mask_func(tokenized_sen, position):
|
264 |
-
|
265 |
-
# if len(tokenized_sen) == 0:
|
266 |
-
# return []
|
267 |
-
# token_list = []
|
268 |
-
# # for sen in tokenized_sen:
|
269 |
-
# # for token in sen:
|
270 |
-
# # token_list.append(token)
|
271 |
-
# for sen in tokenized_sen:
|
272 |
-
# token_list += sen.text.split(' ')
|
273 |
-
# l_p = 0
|
274 |
-
# r_p = 1
|
275 |
-
# assert position == 'front' or position == 'back'
|
276 |
-
# if position == 'back':
|
277 |
-
# l_p, r_p = r_p, l_p
|
278 |
-
# P = np.linspace(start = l_p, stop = r_p, num = len(token_list))
|
279 |
-
# P = (P ** 3) * 0.4
|
280 |
-
|
281 |
-
# ret_list = []
|
282 |
-
# for t, p in zip(token_list, list(P)):
|
283 |
-
# if '.' in t or '(' in t or ')' in t or '[' in t or ']' in t:
|
284 |
-
# ret_list.append(t)
|
285 |
-
# else:
|
286 |
-
# if np.random.rand() < p:
|
287 |
-
# ret_list.append('<mask>')
|
288 |
-
# else:
|
289 |
-
# ret_list.append(t)
|
290 |
-
# return [' '.join(ret_list)]
|
291 |
def mask_func(tokenized_sen):
|
292 |
|
293 |
if len(tokenized_sen) == 0:
|
@@ -441,11 +374,7 @@ elif args.mode == 'finetune':
|
|
441 |
ret = {}
|
442 |
case_study = {}
|
443 |
p_ret = {}
|
444 |
-
add = 0
|
445 |
dpath_i = 0
|
446 |
-
inner_better = 0
|
447 |
-
outter_better = 0
|
448 |
-
better_than_gpt = 0
|
449 |
for i,(k, v) in enumerate(tqdm(draft.items())):
|
450 |
|
451 |
span = ret_candidates[str(i)]['span']
|
@@ -573,80 +502,26 @@ elif args.mode == 'finetune':
|
|
573 |
log_Loss = log_Loss[:old_L]
|
574 |
# sen_list = sen_list[:old_L]
|
575 |
|
576 |
-
# mini_span should be preserved
|
577 |
-
# for j in range(len(log_Loss)):
|
578 |
-
# doc = nlp(sen_list[j])
|
579 |
-
# sens = [sen.text for sen in doc.sents]
|
580 |
-
# Len = len(sen_list)
|
581 |
-
# check_text = ' '.join(sens[j : max(0,len(sens) - Len) + j + 1])
|
582 |
-
# if span not in check_text:
|
583 |
-
# log_Loss[j] += 1
|
584 |
-
|
585 |
p = np.argmin(log_Loss)
|
586 |
-
if p < old_L // 2:
|
587 |
-
inner_better += 1
|
588 |
-
else:
|
589 |
-
outter_better += 1
|
590 |
content = []
|
591 |
for i in range(len(real_log_Loss)):
|
592 |
content.append([sen_list[i], str(real_log_Loss[i])])
|
593 |
scored[k] = {'path':path_text, 'prompt': prompt, 'in':input, 's':text_s, 'o':text_o, 'out': content, 'bound': boundary}
|
594 |
p_p = p
|
595 |
-
# print('Old_L:', old_L)
|
596 |
|
597 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
598 |
p_p = p+1+old_L
|
599 |
-
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
600 |
-
add += 1
|
601 |
|
602 |
-
if real_log_Loss[p]
|
603 |
-
better_than_gpt += 1
|
604 |
-
else:
|
605 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
606 |
p = p+1+old_L
|
607 |
# case_study[k] = {'path':path_text, 'entity_0': text_s, 'entity_1': text_o, 'GPT_in': input, 'Prompt': prompt, 'GPT_out': {'text': output, 'perplexity': str(np.exp(real_log_Loss[old_L]))}, 'BART_in': BART_in[p], 'BART_out': {'text': sen_list[p], 'perplexity': str(np.exp(real_log_Loss[p]))}, 'Assist': {'text': Assist[p], 'perplexity': str(np.exp(real_log_Loss[p+1+old_L]))}}
|
608 |
ret[k] = {'prompt': prompt, 'in':input, 'out': sen_list[p]}
|
609 |
-
|
610 |
-
print(add)
|
611 |
-
print('inner_better:', inner_better)
|
612 |
-
print('outter_better:', outter_better)
|
613 |
-
print('better_than_gpt:', better_than_gpt)
|
614 |
-
print('better_than_replace', add)
|
615 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}{args.ratio}_bioBART_finetune.json', 'w') as fl:
|
616 |
json.dump(ret, fl, indent=4)
|
617 |
-
# with open(f'generate_abstract/bioBART/case_{args.target_split}_{args.reasonable_rate}_bioBART_finetune.json', 'w') as fl:
|
618 |
-
# json.dump(case_study, fl, indent=4)
|
619 |
with open(f'generate_abstract/bioBART/{args.init_mode}{args.reasonable_rate}{args.ratio}_scored.json', 'w') as fl:
|
620 |
json.dump(scored, fl, indent=4)
|
621 |
-
|
622 |
-
json.dump(p_ret, fl, indent=4)
|
623 |
-
|
624 |
-
# with open(Parameters.GNBRfile+'original_entity_raw_name', 'rb') as fl:
|
625 |
-
# full_entity_raw_name = pkl.load(fl)
|
626 |
-
# for k, v in entity_raw_name.items():
|
627 |
-
# assert v in full_entity_raw_name[k]
|
628 |
-
|
629 |
-
# nlp = spacy.load("en_core_web_sm")
|
630 |
-
# type_set = set()
|
631 |
-
# for aa in range(36):
|
632 |
-
# dependency_sen_dict = retieve_sentence_through_edgetype[aa]['manual']
|
633 |
-
# tmp_dict = retieve_sentence_through_edgetype[aa]['auto']
|
634 |
-
# dependencys = list(dependency_sen_dict.keys()) + list(tmp_dict.keys())
|
635 |
-
# for dependency in dependencys:
|
636 |
-
# dep_list = dependency.split(' ')
|
637 |
-
# for sub_dep in dep_list:
|
638 |
-
# sub_dep_list = sub_dep.split('|')
|
639 |
-
# assert(len(sub_dep_list) == 3)
|
640 |
-
# type_set.add(sub_dep_list[1])
|
641 |
-
|
642 |
-
# fine_dict = {}
|
643 |
-
# for k, v_dict in draft.items():
|
644 |
-
|
645 |
-
# input = v_dict['in']
|
646 |
-
# output = v_dict['out']
|
647 |
-
# fine_dict[k] = {'in':input, 'out': input + ' ' + output}
|
648 |
-
|
649 |
-
# with open(f'generate_abstract/{args.target_split}_{args.reasonable_rate}_sentence_finetune.json', 'w') as fl:
|
650 |
-
# json.dump(fine_dict, fl, indent=4)
|
651 |
else:
|
652 |
raise Exception('Wrong mode !!')
|
|
|
162 |
|
163 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}_sentence.json', 'w') as fl:
|
164 |
json.dump(single_sentence, fl, indent=4)
|
165 |
+
|
|
|
|
|
|
|
166 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_path.json', 'w') as fl:
|
167 |
fl.write('\n'.join(test_dp))
|
168 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_temp.json', 'w') as fl:
|
169 |
fl.write('\n'.join(test_text))
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
elif args.mode == 'finetune':
|
172 |
|
173 |
import spacy
|
|
|
221 |
vec[i] = True
|
222 |
return vec, span
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
def mask_func(tokenized_sen):
|
225 |
|
226 |
if len(tokenized_sen) == 0:
|
|
|
374 |
ret = {}
|
375 |
case_study = {}
|
376 |
p_ret = {}
|
|
|
377 |
dpath_i = 0
|
|
|
|
|
|
|
378 |
for i,(k, v) in enumerate(tqdm(draft.items())):
|
379 |
|
380 |
span = ret_candidates[str(i)]['span']
|
|
|
502 |
log_Loss = log_Loss[:old_L]
|
503 |
# sen_list = sen_list[:old_L]
|
504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
p = np.argmin(log_Loss)
|
|
|
|
|
|
|
|
|
506 |
content = []
|
507 |
for i in range(len(real_log_Loss)):
|
508 |
content.append([sen_list[i], str(real_log_Loss[i])])
|
509 |
scored[k] = {'path':path_text, 'prompt': prompt, 'in':input, 's':text_s, 'o':text_o, 'out': content, 'bound': boundary}
|
510 |
p_p = p
|
|
|
511 |
|
512 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
513 |
p_p = p+1+old_L
|
|
|
|
|
514 |
|
515 |
+
if real_log_Loss[p] > real_log_Loss[old_L]:
|
|
|
|
|
516 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
517 |
p = p+1+old_L
|
518 |
# case_study[k] = {'path':path_text, 'entity_0': text_s, 'entity_1': text_o, 'GPT_in': input, 'Prompt': prompt, 'GPT_out': {'text': output, 'perplexity': str(np.exp(real_log_Loss[old_L]))}, 'BART_in': BART_in[p], 'BART_out': {'text': sen_list[p], 'perplexity': str(np.exp(real_log_Loss[p]))}, 'Assist': {'text': Assist[p], 'perplexity': str(np.exp(real_log_Loss[p+1+old_L]))}}
|
519 |
ret[k] = {'prompt': prompt, 'in':input, 'out': sen_list[p]}
|
520 |
+
|
|
|
|
|
|
|
|
|
|
|
521 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}{args.ratio}_bioBART_finetune.json', 'w') as fl:
|
522 |
json.dump(ret, fl, indent=4)
|
|
|
|
|
523 |
with open(f'generate_abstract/bioBART/{args.init_mode}{args.reasonable_rate}{args.ratio}_scored.json', 'w') as fl:
|
524 |
json.dump(scored, fl, indent=4)
|
525 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
else:
|
527 |
raise Exception('Wrong mode !!')
|
DiseaseAgnostic/generate_abstract/random0.7_bioBART_finetune.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
DiseaseAgnostic/processed_data/attack_edge_distmult_0.7random.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b0ccfbd4d67a60aeef746e45f3e322612f92d2f4ee28f4fe645a84f8284a226
|
3 |
+
size 4014
|
DiseaseAgnostic/processed_data/target_0.7random.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ceda69a4136eb899e6ef21a7ff56ac00d75eac71b056181e7d816532f041634
|
3 |
+
size 1214
|