Spaces:
Runtime error
Runtime error
File size: 7,644 Bytes
51a61da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import math,pdb
import torch,pynvml
from torch.nn.functional import normalize
from time import time
import numpy as np
# device=torch.device("cuda:0")
def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
""" Picks k points in the data based on the kmeans++ method.
Parameters
----------
data : torch.Tensor
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
data, rank 2 multidimensional data, in which case one
row is one observation.
k : int
Number of samples to generate.
sample_size : int
sample data to avoid memory overflow during calculation
Returns
-------
init : ndarray
A 'k' by 'N' containing the initial centroids.
References
----------
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2007.
.. [2] scipy/cluster/vq.py: _kpp
"""
batch_size=data.shape[0]
if batch_size>sample_size:
data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
dims = data.shape[1] if len(data.shape) > 1 else 1
init = torch.zeros((k, dims)).to(data.device)
r = torch.distributions.uniform.Uniform(0, 1)
for i in range(k):
if i == 0:
init[i, :] = data[torch.randint(data.shape[0], [1])]
else:
D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
probs = D2 / torch.sum(D2)
cumprobs = torch.cumsum(probs, dim=0)
init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
return init
class KMeansGPU:
'''
Kmeans clustering algorithm implemented with PyTorch
Parameters:
n_clusters: int,
Number of clusters
max_iter: int, default: 100
Maximum number of iterations
tol: float, default: 0.0001
Tolerance
verbose: int, default: 0
Verbosity
mode: {'euclidean', 'cosine'}, default: 'euclidean'
Type of distance measure
init_method: {'random', 'point', '++'}
Type of initialization
minibatch: {None, int}, default: None
Batch size of MinibatchKmeans algorithm
if None perform full KMeans algorithm
Attributes:
centroids: torch.Tensor, shape: [n_clusters, n_features]
cluster centroids
'''
def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.tol = tol
self.verbose = verbose
self.mode = mode
self.device=device
pynvml.nvmlInit()
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
@staticmethod
def cos_sim(a, b):
"""
Compute cosine similarity of 2 sets of vectors
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
@staticmethod
def euc_sim(a, b):
"""
Compute euclidean similarity of 2 sets of vectors
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
def max_sim(self, a, b):
"""
Compute maximum similarity (or minimum distance) of each vector
in a with all of the vectors in b
Parameters:
a: torch.Tensor, shape: [m, n_features]
b: torch.Tensor, shape: [n, n_features]
"""
if self.mode == 'cosine':
sim_func = self.cos_sim
elif self.mode == 'euclidean':
sim_func = self.euc_sim
sim = sim_func(a, b)
max_sim_v, max_sim_i = sim.max(dim=-1)
return max_sim_v, max_sim_i
def fit_predict(self, X):
"""
Combination of fit() and predict() methods.
This is faster than calling fit() and predict() seperately.
Parameters:
X: torch.Tensor, shape: [n_samples, n_features]
centroids: {torch.Tensor, None}, default: None
if given, centroids will be initialized with given tensor
if None, centroids will be randomly chosen from X
Return:
labels: torch.Tensor, shape: [n_samples]
mini_=33kk/k*remain
mini=min(mini_,fea_shape)
offset=log2(k/1000)*1.5
kpp_all=min(mini_*10/offset,fea_shape)
kpp_sample=min(mini_/12/offset,fea_shape)
"""
assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
# print("verbose:%s"%self.verbose)
offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
with torch.no_grad():
batch_size= X.shape[0]
# print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
start_time = time()
if (self.minibatch*10//offset< batch_size):
x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
else:
x = X.to(self.device)
# print(x.device)
self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
del x
torch.cuda.empty_cache()
# self.centroids = self.centroids.to(self.device)
num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
closest = None#[3098036]#int64
if(self.minibatch>=batch_size//2 and self.minibatch<batch_size):
X = X[torch.randint(0, batch_size,[self.minibatch])].to(self.device)
elif(self.minibatch>=batch_size):
X=X.to(self.device)
for i in range(self.max_iter):
iter_time = time()
if self.minibatch<batch_size//2:#可用minibatch数太小,每次都得从内存倒腾到显存
x = X[torch.randint(0, batch_size, [self.minibatch])].to(self.device)
else:#否则直接全部缓存
x = X
closest = self.max_sim(a=x, b=self.centroids)[1].to(torch.int16)#[3098036]#int64#0~999
matched_clusters, counts = closest.unique(return_counts=True)#int64#1k
expanded_closest = closest[None].expand(self.n_clusters, -1)#[1000, 3098036]#int16#0~999
mask = (expanded_closest==torch.arange(self.n_clusters, device=self.device)[:, None]).to(X.dtype)#==后者是int64*1000
c_grad = mask @ x / mask.sum(-1)[..., :, None]
c_grad[c_grad!=c_grad] = 0 # remove NaNs
error = (c_grad - self.centroids).pow(2).sum()
if self.minibatch is not None:
lr = 1/num_points_in_clusters[:,None] * 0.9 + 0.1
else:
lr = 1
matched_clusters=matched_clusters.long()
num_points_in_clusters[matched_clusters] += counts#IndexError: tensors used as indices must be long, byte or bool tensors
self.centroids = self.centroids * (1-lr) + c_grad * lr
if self.verbose >= 2:
print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
if error <= self.tol:
break
if self.verbose >= 1:
print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
return closest
|