Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchaudio | |
import torchaudio.functional | |
from torchvision import transforms | |
import torchvision.transforms.functional as F | |
import torch.nn as nn | |
from PIL import Image | |
import numpy as np | |
import math | |
import random | |
class ResizeShortSide(object): | |
def __init__(self, size): | |
super().__init__() | |
self.size = size | |
def __call__(self, x): | |
''' | |
x must be PIL.Image | |
''' | |
w, h = x.size | |
short_side = min(w, h) | |
w_target = int((w / short_side) * self.size) | |
h_target = int((h / short_side) * self.size) | |
return x.resize((w_target, h_target)) | |
class RandomResizedCrop3D(nn.Module): | |
"""Crop the given series of images to random size and aspect ratio. | |
The image can be a PIL Images or a Tensor, in which case it is expected | |
to have [N, ..., H, W] shape, where ... means an arbitrary number of leading dimensions | |
A crop of random size (default: of 0.08 to 1.0) of the original size and a random | |
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop | |
is finally resized to given size. | |
This is popularly used to train the Inception networks. | |
Args: | |
size (int or sequence): expected output size of each edge. If size is an | |
int instead of sequence like (h, w), a square output size ``(size, size)`` is | |
made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]). | |
scale (tuple of float): range of size of the origin size cropped | |
ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped. | |
interpolation (int): Desired interpolation enum defined by `filters`_. | |
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR`` | |
and ``PIL.Image.BICUBIC`` are supported. | |
""" | |
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=transforms.InterpolationMode.BILINEAR): | |
super().__init__() | |
if isinstance(size, tuple) and len(size) == 2: | |
self.size = size | |
else: | |
self.size = (size, size) | |
self.interpolation = interpolation | |
self.scale = scale | |
self.ratio = ratio | |
def get_params(img, scale, ratio): | |
"""Get parameters for ``crop`` for a random sized crop. | |
Args: | |
img (PIL Image or Tensor): Input image. | |
scale (list): range of scale of the origin size cropped | |
ratio (list): range of aspect ratio of the origin aspect ratio cropped | |
Returns: | |
tuple: params (i, j, h, w) to be passed to ``crop`` for a random | |
sized crop. | |
""" | |
width, height = img.size | |
area = height * width | |
for _ in range(10): | |
target_area = area * \ | |
torch.empty(1).uniform_(scale[0], scale[1]).item() | |
log_ratio = torch.log(torch.tensor(ratio)) | |
aspect_ratio = torch.exp( | |
torch.empty(1).uniform_(log_ratio[0], log_ratio[1]) | |
).item() | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if 0 < w <= width and 0 < h <= height: | |
i = torch.randint(0, height - h + 1, size=(1,)).item() | |
j = torch.randint(0, width - w + 1, size=(1,)).item() | |
return i, j, h, w | |
# Fallback to central crop | |
in_ratio = float(width) / float(height) | |
if in_ratio < min(ratio): | |
w = width | |
h = int(round(w / min(ratio))) | |
elif in_ratio > max(ratio): | |
h = height | |
w = int(round(h * max(ratio))) | |
else: # whole image | |
w = width | |
h = height | |
i = (height - h) // 2 | |
j = (width - w) // 2 | |
return i, j, h, w | |
def forward(self, imgs): | |
""" | |
Args: | |
img (PIL Image or Tensor): Image to be cropped and resized. | |
Returns: | |
PIL Image or Tensor: Randomly cropped and resized image. | |
""" | |
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio) | |
return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation) for img in imgs] | |
class Resize3D(object): | |
def __init__(self, size): | |
super().__init__() | |
self.size = size | |
def __call__(self, imgs): | |
''' | |
x must be PIL.Image | |
''' | |
return [x.resize((self.size, self.size)) for x in imgs] | |
class RandomHorizontalFlip3D(object): | |
def __init__(self, p=0.5): | |
super().__init__() | |
self.p = p | |
def __call__(self, imgs): | |
''' | |
x must be PIL.Image | |
''' | |
if np.random.rand() < self.p: | |
return [x.transpose(Image.FLIP_LEFT_RIGHT) for x in imgs] | |
else: | |
return imgs | |
class ColorJitter3D(torch.nn.Module): | |
"""Randomly change the brightness, contrast and saturation of an image. | |
Args: | |
brightness (float or tuple of float (min, max)): How much to jitter brightness. | |
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness] | |
or the given [min, max]. Should be non negative numbers. | |
contrast (float or tuple of float (min, max)): How much to jitter contrast. | |
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast] | |
or the given [min, max]. Should be non negative numbers. | |
saturation (float or tuple of float (min, max)): How much to jitter saturation. | |
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation] | |
or the given [min, max]. Should be non negative numbers. | |
hue (float or tuple of float (min, max)): How much to jitter hue. | |
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max]. | |
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5. | |
""" | |
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): | |
super().__init__() | |
self.brightness = (1-brightness, 1+brightness) | |
self.contrast = (1-contrast, 1+contrast) | |
self.saturation = (1-saturation, 1+saturation) | |
self.hue = (0-hue, 0+hue) | |
def get_params(brightness, contrast, saturation, hue): | |
"""Get a randomized transform to be applied on image. | |
Arguments are same as that of __init__. | |
Returns: | |
Transform which randomly adjusts brightness, contrast and | |
saturation in a random order. | |
""" | |
tfs = [] | |
if brightness is not None: | |
brightness_factor = random.uniform(brightness[0], brightness[1]) | |
tfs.append(transforms.Lambda( | |
lambda img: F.adjust_brightness(img, brightness_factor))) | |
if contrast is not None: | |
contrast_factor = random.uniform(contrast[0], contrast[1]) | |
tfs.append(transforms.Lambda( | |
lambda img: F.adjust_contrast(img, contrast_factor))) | |
if saturation is not None: | |
saturation_factor = random.uniform(saturation[0], saturation[1]) | |
tfs.append(transforms.Lambda( | |
lambda img: F.adjust_saturation(img, saturation_factor))) | |
if hue is not None: | |
hue_factor = random.uniform(hue[0], hue[1]) | |
tfs.append(transforms.Lambda( | |
lambda img: F.adjust_hue(img, hue_factor))) | |
random.shuffle(tfs) | |
transform = transforms.Compose(tfs) | |
return transform | |
def forward(self, imgs): | |
""" | |
Args: | |
img (PIL Image or Tensor): Input image. | |
Returns: | |
PIL Image or Tensor: Color jittered image. | |
""" | |
transform = self.get_params( | |
self.brightness, self.contrast, self.saturation, self.hue) | |
return [transform(img) for img in imgs] | |
class ToTensor3D(object): | |
def __init__(self): | |
super().__init__() | |
def __call__(self, imgs): | |
''' | |
x must be PIL.Image | |
''' | |
return [F.to_tensor(img) for img in imgs] | |
class Normalize3D(object): | |
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], inplace=False): | |
super().__init__() | |
self.mean = mean | |
self.std = std | |
self.inplace = inplace | |
def __call__(self, imgs): | |
''' | |
x must be PIL.Image | |
''' | |
return [F.normalize(img, self.mean, self.std, self.inplace) for img in imgs] | |
class CenterCrop3D(object): | |
def __init__(self, size): | |
super().__init__() | |
self.size = size | |
def __call__(self, imgs): | |
''' | |
x must be PIL.Image | |
''' | |
return [F.center_crop(img, self.size) for img in imgs] | |
class FrequencyMasking(object): | |
def __init__(self, freq_mask_param: int, iid_masks: bool = False): | |
super().__init__() | |
self.masking = torchaudio.transforms.FrequencyMasking(freq_mask_param, iid_masks) | |
def __call__(self, item): | |
if 'cond_image' in item.keys(): | |
batched_spec = torch.stack( | |
[torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0 | |
)[:, None] # (2, 1, H, W) | |
masked = self.masking(batched_spec).numpy() | |
item['image'] = masked[0, 0] | |
item['cond_image'] = masked[1, 0] | |
elif 'image' in item.keys(): | |
inp = torch.tensor(item['image']) | |
item['image'] = self.masking(inp).numpy() | |
else: | |
raise NotImplementedError() | |
return item | |
class TimeMasking(object): | |
def __init__(self, time_mask_param: int, iid_masks: bool = False): | |
super().__init__() | |
self.masking = torchaudio.transforms.TimeMasking(time_mask_param, iid_masks) | |
def __call__(self, item): | |
if 'cond_image' in item.keys(): | |
batched_spec = torch.stack( | |
[torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0 | |
)[:, None] # (2, 1, H, W) | |
masked = self.masking(batched_spec).numpy() | |
item['image'] = masked[0, 0] | |
item['cond_image'] = masked[1, 0] | |
elif 'image' in item.keys(): | |
inp = torch.tensor(item['image']) | |
item['image'] = self.masking(inp).numpy() | |
else: | |
raise NotImplementedError() | |
return item | |