File size: 1,799 Bytes
826e275
 
7a75a15
 
826e275
 
 
d73a8e9
826e275
6e4f775
7a75a15
826e275
e0bb50d
7068818
df273ff
826e275
6e4f775
49efed6
6e4f775
7068818
826e275
 
 
7068818
826e275
7068818
49efed6
826e275
 
 
49efed6
0e07a66
49efed6
7068818
d73a8e9
826e275
 
 
49efed6
b1dd47e
826e275
 
 
b1dd47e
0499581
7068818
0499581
 
 
d73a8e9
 
 
b1dd47e
49efed6
 
9c8dd72
 
7068818
9c8dd72
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
The Streamlit app for the project demo.
In the demo, the user can write a prompt
 and the model will generate a response using the grouped sampling algorithm.
"""

import streamlit as st
from torch.cuda import CudaError

from available_models import AVAILABLE_MODELS
from hanlde_form_submit import on_form_submit


st.title("讚讙讬诪讛 讘拽讘讜爪讜转 - 砖讬诪讜砖 讬注讬诇 讘诪讜讚诇讬 砖驻讛 住讬讘转讬讬诐")

with st.form("request_form"):
    selected_model_name: str = st.selectbox(
        label="讘讞专讜 诪讜讚诇",
        options=AVAILABLE_MODELS,
        help="opt-iml-max-30b generates better texts but is slower",
    )

    output_length: int = st.number_input(
        label="讻诪讜转 讛诪讬诇讬诐 讛诪拽住讬诪诇讬转 讘驻诇讟 - 讘讬谉 1 诇-4096",
        min_value=1,
        max_value=4096,
        value=5,
    )

    submitted_prompt: str = st.text_area(
        label="讛拽诇讟 诇讗诇讜讙专讬转诐 (讘讗谞讙诇讬转 讘诇讘讚)",
        value="Instruction: Answer in yes or no.\n"
              "Question: Is the sky blue?\n"
              "Answer: ",
        max_chars=2048,
    )

    submitted: bool = st.form_submit_button(
        label="爪讜专 讟拽住讟",
        disabled=False,
    )

    if submitted:
        try:
            output = on_form_submit(
                selected_model_name,
                output_length,
                submitted_prompt,
            )
        except CudaError as e:
            st.error("Out of memory. Please try a smaller model, shorter prompt, or a smaller output length.")
        except (ValueError, TypeError, RuntimeError) as e:
            st.error(e)
        else:
            st.write(f"Generated text: {output}")


with open("user_instructions_hebrew.md", "r") as fh:
    long_description = fh.read()
st.markdown(long_description)