File size: 2,023 Bytes
88e5715 564b069 bccbfcc 79c110e 88e5715 808bedf 88e5715 808bedf 88e5715 808bedf 88e5715 808bedf 88e5715 433bf2b 706f9eb 808bedf 6a0870f 88e5715 808bedf 88e5715 8a40f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from IPython.display import display
import torchvision.transforms as T
import gradio as gr
def greet(url):
# load Mask2Former fine-tuned on Cityscapes semantic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-cityscapes-semantic")
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
# predicted_semantic_map์ 8๋นํธ ๋ถํธ ์๋ ์ ์๋ก ๋ณํ
# ์ด๋ฏธ์ง๋ฅผ ๋ถํธ ์๋ 8๋นํธ ์ ์๋ก ๋ณํ (0์์ 255 ์ฌ์ด์ ๊ฐ์ผ๋ก ์ค์ผ์ผ๋ง)
predicted_semantic_map_scaled = (predicted_semantic_map - predicted_semantic_map.min()) / (predicted_semantic_map.max() - predicted_semantic_map.min()) * 255
predicted_semantic_map_uint8 = predicted_semantic_map_scaled.to(torch.uint8)
tensor_to_pil = T.ToPILImage()
image = tensor_to_pil(predicted_semantic_map_uint8)
return image
url = "http://www.apparelnews.co.kr/upfiles/manage/202302/5d5f694177b26fc86e5db623bf7ae4b7.jpg"
#greet(url)
iface = gr.Interface(
fn=greet,
inputs=gr.Image(value=url),
live=True
)
iface.launch(debug = True)
|