|
import pickle |
|
import os |
|
import re |
|
from g2p_en import G2p |
|
|
|
from . import symbols |
|
|
|
from .english_utils.abbreviations import expand_abbreviations |
|
from .english_utils.time_norm import expand_time_english |
|
from .english_utils.number_norm import normalize_numbers |
|
from .japanese import distribute_phone |
|
|
|
from transformers import AutoTokenizer |
|
|
|
current_file_path = os.path.dirname(__file__) |
|
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep") |
|
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle") |
|
_g2p = G2p() |
|
|
|
arpa = { |
|
"AH0", |
|
"S", |
|
"AH1", |
|
"EY2", |
|
"AE2", |
|
"EH0", |
|
"OW2", |
|
"UH0", |
|
"NG", |
|
"B", |
|
"G", |
|
"AY0", |
|
"M", |
|
"AA0", |
|
"F", |
|
"AO0", |
|
"ER2", |
|
"UH1", |
|
"IY1", |
|
"AH2", |
|
"DH", |
|
"IY0", |
|
"EY1", |
|
"IH0", |
|
"K", |
|
"N", |
|
"W", |
|
"IY2", |
|
"T", |
|
"AA1", |
|
"ER1", |
|
"EH2", |
|
"OY0", |
|
"UH2", |
|
"UW1", |
|
"Z", |
|
"AW2", |
|
"AW1", |
|
"V", |
|
"UW2", |
|
"AA2", |
|
"ER", |
|
"AW0", |
|
"UW0", |
|
"R", |
|
"OW1", |
|
"EH1", |
|
"ZH", |
|
"AE0", |
|
"IH2", |
|
"IH", |
|
"Y", |
|
"JH", |
|
"P", |
|
"AY1", |
|
"EY0", |
|
"OY2", |
|
"TH", |
|
"HH", |
|
"D", |
|
"ER0", |
|
"CH", |
|
"AO1", |
|
"AE1", |
|
"AO2", |
|
"OY1", |
|
"AY2", |
|
"IH1", |
|
"OW0", |
|
"L", |
|
"SH", |
|
} |
|
|
|
|
|
def post_replace_ph(ph): |
|
rep_map = { |
|
"οΌ": ",", |
|
"οΌ": ",", |
|
"οΌ": ",", |
|
"γ": ".", |
|
"οΌ": "!", |
|
"οΌ": "?", |
|
"\n": ".", |
|
"Β·": ",", |
|
"γ": ",", |
|
"...": "β¦", |
|
"v": "V", |
|
} |
|
if ph in rep_map.keys(): |
|
ph = rep_map[ph] |
|
if ph in symbols: |
|
return ph |
|
if ph not in symbols: |
|
ph = "UNK" |
|
return ph |
|
|
|
|
|
def read_dict(): |
|
g2p_dict = {} |
|
start_line = 49 |
|
with open(CMU_DICT_PATH) as f: |
|
line = f.readline() |
|
line_index = 1 |
|
while line: |
|
if line_index >= start_line: |
|
line = line.strip() |
|
word_split = line.split(" ") |
|
word = word_split[0] |
|
|
|
syllable_split = word_split[1].split(" - ") |
|
g2p_dict[word] = [] |
|
for syllable in syllable_split: |
|
phone_split = syllable.split(" ") |
|
g2p_dict[word].append(phone_split) |
|
|
|
line_index = line_index + 1 |
|
line = f.readline() |
|
|
|
return g2p_dict |
|
|
|
|
|
def cache_dict(g2p_dict, file_path): |
|
with open(file_path, "wb") as pickle_file: |
|
pickle.dump(g2p_dict, pickle_file) |
|
|
|
|
|
def get_dict(): |
|
if os.path.exists(CACHE_PATH): |
|
with open(CACHE_PATH, "rb") as pickle_file: |
|
g2p_dict = pickle.load(pickle_file) |
|
else: |
|
g2p_dict = read_dict() |
|
cache_dict(g2p_dict, CACHE_PATH) |
|
|
|
return g2p_dict |
|
|
|
|
|
eng_dict = get_dict() |
|
|
|
|
|
def refine_ph(phn): |
|
tone = 0 |
|
if re.search(r"\d$", phn): |
|
tone = int(phn[-1]) + 1 |
|
phn = phn[:-1] |
|
return phn.lower(), tone |
|
|
|
|
|
def refine_syllables(syllables): |
|
tones = [] |
|
phonemes = [] |
|
for phn_list in syllables: |
|
for i in range(len(phn_list)): |
|
phn = phn_list[i] |
|
phn, tone = refine_ph(phn) |
|
phonemes.append(phn) |
|
tones.append(tone) |
|
return phonemes, tones |
|
|
|
|
|
def text_normalize(text): |
|
text = text.lower() |
|
text = expand_time_english(text) |
|
text = normalize_numbers(text) |
|
text = expand_abbreviations(text) |
|
return text |
|
|
|
model_id = 'bert-base-uncased' |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
def g2p_old(text): |
|
tokenized = tokenizer.tokenize(text) |
|
|
|
phones = [] |
|
tones = [] |
|
words = re.split(r"([,;.\-\?\!\s+])", text) |
|
for w in words: |
|
if w.upper() in eng_dict: |
|
phns, tns = refine_syllables(eng_dict[w.upper()]) |
|
phones += phns |
|
tones += tns |
|
else: |
|
phone_list = list(filter(lambda p: p != " ", _g2p(w))) |
|
for ph in phone_list: |
|
if ph in arpa: |
|
ph, tn = refine_ph(ph) |
|
phones.append(ph) |
|
tones.append(tn) |
|
else: |
|
phones.append(ph) |
|
tones.append(0) |
|
|
|
word2ph = [1 for i in phones] |
|
|
|
phones = [post_replace_ph(i) for i in phones] |
|
return phones, tones, word2ph |
|
|
|
def g2p(text, pad_start_end=True, tokenized=None): |
|
if tokenized is None: |
|
tokenized = tokenizer.tokenize(text) |
|
|
|
phs = [] |
|
ph_groups = [] |
|
for t in tokenized: |
|
if not t.startswith("#"): |
|
ph_groups.append([t]) |
|
else: |
|
ph_groups[-1].append(t.replace("#", "")) |
|
|
|
phones = [] |
|
tones = [] |
|
word2ph = [] |
|
for group in ph_groups: |
|
w = "".join(group) |
|
phone_len = 0 |
|
word_len = len(group) |
|
if w.upper() in eng_dict: |
|
phns, tns = refine_syllables(eng_dict[w.upper()]) |
|
phones += phns |
|
tones += tns |
|
phone_len += len(phns) |
|
else: |
|
phone_list = list(filter(lambda p: p != " ", _g2p(w))) |
|
for ph in phone_list: |
|
if ph in arpa: |
|
ph, tn = refine_ph(ph) |
|
phones.append(ph) |
|
tones.append(tn) |
|
else: |
|
phones.append(ph) |
|
tones.append(0) |
|
phone_len += 1 |
|
aaa = distribute_phone(phone_len, word_len) |
|
word2ph += aaa |
|
phones = [post_replace_ph(i) for i in phones] |
|
|
|
if pad_start_end: |
|
phones = ["_"] + phones + ["_"] |
|
tones = [0] + tones + [0] |
|
word2ph = [1] + word2ph + [1] |
|
return phones, tones, word2ph |
|
|
|
def get_bert_feature(text, word2ph, device=None): |
|
from text import english_bert |
|
|
|
return english_bert.get_bert_feature(text, word2ph, device=device) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
from text.english_bert import get_bert_feature |
|
text = "In this paper, we propose 1 DSPGAN, a N-F-T GAN-based universal vocoder." |
|
text = text_normalize(text) |
|
phones, tones, word2ph = g2p(text) |
|
import pdb; pdb.set_trace() |
|
bert = get_bert_feature(text, word2ph) |
|
|
|
print(phones, tones, word2ph, bert.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|