File size: 3,091 Bytes
129413a
 
 
42b930d
129413a
 
 
 
 
 
 
1731a50
a35571e
3eacac7
72f2f88
1beff8d
129413a
1beff8d
96c2526
129413a
b8480bb
129413a
b8480bb
129413a
 
 
03449b0
129413a
 
c1127b8
09e4eaf
 
 
 
 
 
 
 
 
 
 
f33dc3d
09e4eaf
 
 
 
f33dc3d
 
 
 
 
 
 
 
 
09e4eaf
f33dc3d
 
 
 
09e4eaf
129413a
f95841a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import json 
import gradio as gr
import os
import requests

hf_token = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL') 
headers = {
    'Content-Type': 'application/json',
}

system_message = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
title = "Llama2 70B Chatbot"
description = """This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, running on Inference Endpoints using text-generation-inference. To have your own dedicated endpoint, you can [deploy it on Inference Endpoints](https://ui.endpoints.huggingface.co/). """ 
css = """.toast-wrap { display: none !important } """

def predict(message, chatbot):
    
    input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n "
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    data = {
        "inputs": input_prompt,
        "parameters": {"max_new_tokens":256}
    }

    response = requests.post(api_url, headers=headers, data=json.dumps(data), auth=('hf', hf_token), stream=True)
    
    partial_message = ""
    for line in response.iter_lines():
        if line:  # filter out keep-alive new lines
            # Decode from bytes to string
            decoded_line = line.decode('utf-8')

            # Remove 'data:' prefix 
            if decoded_line.startswith('data:'):
                json_line = decoded_line[5:]  # Exclude the first 5 characters ('data:')
            else:
                gr.Warning(f"This line does not start with 'data:': {decoded_line}")
                continue

            # Load as JSON
            try:
                json_obj = json.loads(json_line)
                if 'token' in json_obj:
                    partial_message = partial_message + json_obj['token']['text'] 
                    yield partial_message
                elif 'error' in json_obj:
                    yield json_obj['error'] + '. Please refresh and try again with an appropriate smaller input prompt.'
                else:
                    gr.Warning(f"The key 'token' does not exist in this JSON object: {json_obj}")

            except json.JSONDecodeError:
                gr.Warning(f"This line is not valid JSON: {json_line}")
                continue
            except KeyError as e:
                gr.Warning(f"KeyError: {e} occurred for JSON object: {json_obj}")
                continue

gr.ChatInterface(predict, title=title, description=description, css=css).queue(concurrency_count=75).launch()