Spaces:
Running
on
T4
Running
on
T4
Upload 10 files
Browse files- .gitattributes +1 -0
- README.md +135 -3
- TTS-Spaces-Arena-25-Dec-2024.png +3 -0
- istftnet.py +523 -0
- kokoro-v0_19.pth +3 -0
- kokoro.py +145 -0
- models.py +591 -0
- plbert.py +15 -0
- voices/af.pt +3 -0
- voices/af_bella.pt +3 -0
- voices/af_sarah.pt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
TTS-Spaces-Arena-25-Dec-2024.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,135 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- yl4579/StyleTTS2-LJSpeech
|
7 |
+
---
|
8 |
+
**Kokoro** is a frontier TTS model for its size of **82 million parameters** (text in/audio out).
|
9 |
+
|
10 |
+
On 25 Dec 2024, Kokoro v0.19 weights were permissively released in full fp32 precision along with 2 voicepacks (Bella and Sarah), all under an Apache 2.0 license.
|
11 |
+
|
12 |
+
At the time of release, Kokoro v0.19 was the #1🥇 ranked model in [TTS Spaces Arena](https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena). With 82M params trained for <20 epochs on <100 total hours of audio, Kokoro achieved higher Elo in this single-voice Arena setting over models such as:
|
13 |
+
- XTTS v2: 467M, CPML, >10k hours
|
14 |
+
- Edge TTS: Microsoft, proprietary
|
15 |
+
- MetaVoice: 1.2B, Apache, 100k hours
|
16 |
+
- Parler Mini: 880M, Apache, 45k hours
|
17 |
+
- Fish Speech: ~500M, CC-BY-NC-SA, 1M hours
|
18 |
+
|
19 |
+
Kokoro's ability to top this Elo ladder using relatively low compute and data suggests that the scaling law for traditional TTS models might have a steeper slope than previously expected.
|
20 |
+
|
21 |
+
You can find a hosted demo at [hf.co/spaces/hexgrad/Kokoro-TTS](https://huggingface.co/spaces/hexgrad/Kokoro-TTS).
|
22 |
+
|
23 |
+
### Usage
|
24 |
+
|
25 |
+
The following can be run in a single cell on [Google Colab](https://colab.research.google.com/).
|
26 |
+
```py
|
27 |
+
# 1️⃣ Install dependencies silently
|
28 |
+
!git clone https://huggingface.co/hexgrad/Kokoro-82M
|
29 |
+
%cd Kokoro-82M
|
30 |
+
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
|
31 |
+
!pip install -q phonemizer torch transformers scipy munch
|
32 |
+
|
33 |
+
# 2️⃣ Build the model and load the default voicepack
|
34 |
+
from models import build_model
|
35 |
+
import torch
|
36 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
+
MODEL = build_model('kokoro-v0_19.pth', device)
|
38 |
+
VOICEPACK = torch.load('voices/af.pt', weights_only=True).to(device)
|
39 |
+
|
40 |
+
# 3️⃣ Call generate, which returns a 24khz audio waveform and a string of output phonemes
|
41 |
+
from kokoro import generate
|
42 |
+
text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
|
43 |
+
audio, out_ps = generate(MODEL, text, VOICEPACK)
|
44 |
+
|
45 |
+
# 4️⃣ Display the 24khz audio and print the output phonemes
|
46 |
+
from IPython.display import display, Audio
|
47 |
+
display(Audio(data=audio, rate=24000, autoplay=True))
|
48 |
+
print(out_ps)
|
49 |
+
```
|
50 |
+
This inference code was quickly hacked together on Christmas Day. It is not clean code and leaves a lot of room for improvement. If you'd like to contribute, feel free to open a PR.
|
51 |
+
|
52 |
+
### Model Description
|
53 |
+
|
54 |
+
No affiliation can be assumed between parties on different lines.
|
55 |
+
|
56 |
+
**Architecture:**
|
57 |
+
- StyleTTS 2: https://arxiv.org/abs/2306.07691
|
58 |
+
- ISTFTNet: https://arxiv.org/abs/2203.02395
|
59 |
+
- Decoder only: no diffusion, no encoder release
|
60 |
+
|
61 |
+
**Architected by:** Li et al @ https://github.com/yl4579/StyleTTS2
|
62 |
+
|
63 |
+
**Trained by**: `@rzvzn` on Discord
|
64 |
+
|
65 |
+
**Supported Languages:** English
|
66 |
+
|
67 |
+
**Model SHA256 Hash:** `3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a`
|
68 |
+
|
69 |
+
**Model Release Date:**
|
70 |
+
- v0.19, Bella, Sarah: 25 Dec 2024
|
71 |
+
|
72 |
+
**Licenses:**
|
73 |
+
- Apache 2.0 weights in this repository
|
74 |
+
- MIT inference code in [spaces/hexgrad/Kokoro-TTS](https://huggingface.co/spaces/hexgrad/Kokoro-TTS) adapted from [yl4579/StyleTTS2](https://github.com/yl4579/StyleTTS2)
|
75 |
+
- GPLv3 dependency in [espeak-ng](https://github.com/espeak-ng/espeak-ng)
|
76 |
+
|
77 |
+
The inference code was originally MIT licensed by the paper author. Note that this card applies only to this model, Kokoro. Original models published by the paper author can be found at [hf.co/yl4579](https://huggingface.co/yl4579).
|
78 |
+
|
79 |
+
### Evaluation
|
80 |
+
|
81 |
+
**Metric:** Elo rating
|
82 |
+
|
83 |
+
**Leaderboard:** [hf.co/spaces/Pendrokar/TTS-Spaces-Arena](https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena)
|
84 |
+
|
85 |
+
![TTS-Spaces-Arena-25-Dec-2024](TTS-Spaces-Arena-25-Dec-2024.png)
|
86 |
+
|
87 |
+
The voice ranked in the Arena is a 50-50 mix of Bella and Sarah. For your convenience, this mix is included in this repository as `af.pt`, but you can trivially reproduce it like this:
|
88 |
+
|
89 |
+
```py
|
90 |
+
import torch
|
91 |
+
bella = torch.load('voices/af_bella.pt', weights_only=True)
|
92 |
+
sarah = torch.load('voices/af_sarah.pt', weights_only=True)
|
93 |
+
af = torch.mean(torch.stack([bella, sarah]), dim=0)
|
94 |
+
assert torch.equal(af, torch.load('voices/af.pt', weights_only=True))
|
95 |
+
```
|
96 |
+
|
97 |
+
### Training Details
|
98 |
+
|
99 |
+
**Compute:** Kokoro was trained on A100 80GB vRAM instances rented from [Vast.ai](https://cloud.vast.ai/?ref_id=79907) (referral link). Vast was chosen over other compute providers due to its competitive on-demand hourly rates. The average hourly cost for the A100 80GB vRAM instances used for training was below $1/hr per GPU, which was around half the quoted rates from other providers at the time.
|
100 |
+
|
101 |
+
**Data:** Kokoro was trained exclusively on **permissive/non-copyrighted audio data** and IPA phoneme labels. Examples of permissive/non-copyrighted audio include:
|
102 |
+
- Public domain audio
|
103 |
+
- Audio licensed under Apache, MIT, etc
|
104 |
+
- Synthetic audio<sup>[1]</sup> generated by closed<sup>[2]</sup> TTS models from large providers<br/>
|
105 |
+
[1] https://copyright.gov/ai/ai_policy_guidance.pdf<br/>
|
106 |
+
[2] No synthetic audio from open TTS models or "custom voice clones"
|
107 |
+
|
108 |
+
**Epochs:** Less than **20 epochs**
|
109 |
+
|
110 |
+
**Total Dataset Size:** Less than **100 hours** of audio
|
111 |
+
|
112 |
+
### Limitations
|
113 |
+
|
114 |
+
Kokoro v0.19 is limited in some ways, in its training set and architecture:
|
115 |
+
- [Data] Lacks voice cloning capability, likely due to small <100h training set
|
116 |
+
- [Arch] Relies on external g2p (espeak-ng), which introduces a class of g2p failure modes
|
117 |
+
- [Data] Training dataset is mostly long-form reading and narration, not conversation
|
118 |
+
- [Arch] At 82M params, Kokoro almost certainly falls to a well-trained 1B+ param diffusion transformer, or a many-billion-param MLLM like GPT-4o / Gemini 2.0 Flash
|
119 |
+
- [Data] Multilingual capability is architecturally feasible, but training data is almost entirely English
|
120 |
+
|
121 |
+
**Will the other voicepacks be released?** There is currently no release date scheduled for the other voicepacks, but in the meantime you can try them in the hosted demo at [hf.co/spaces/hexgrad/Kokoro-TTS](https://huggingface.co/spaces/hexgrad/Kokoro-TTS).
|
122 |
+
|
123 |
+
### Acknowledgements
|
124 |
+
- [@yl4579](https://huggingface.co/yl4579) for architecting StyleTTS 2
|
125 |
+
- [@Pendrokar](https://huggingface.co/Pendrokar) for adding Kokoro as a contender in the TTS Spaces Arena
|
126 |
+
|
127 |
+
### Model Card Contact
|
128 |
+
|
129 |
+
`@rzvzn` on Discord
|
130 |
+
|
131 |
+
```py
|
132 |
+
# TODO: Add Discord server
|
133 |
+
```
|
134 |
+
|
135 |
+
<img src="https://static0.gamerantimages.com/wordpress/wp-content/uploads/2024/08/terminator-zero-41-1.jpg" width="400" alt="kokoro" />
|
TTS-Spaces-Arena-25-Dec-2024.png
ADDED
Git LFS Details
|
istftnet.py
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
2 |
+
from scipy.signal import get_window
|
3 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
4 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
11 |
+
def init_weights(m, mean=0.0, std=0.01):
|
12 |
+
classname = m.__class__.__name__
|
13 |
+
if classname.find("Conv") != -1:
|
14 |
+
m.weight.data.normal_(mean, std)
|
15 |
+
|
16 |
+
def get_padding(kernel_size, dilation=1):
|
17 |
+
return int((kernel_size*dilation - dilation)/2)
|
18 |
+
|
19 |
+
LRELU_SLOPE = 0.1
|
20 |
+
|
21 |
+
class AdaIN1d(nn.Module):
|
22 |
+
def __init__(self, style_dim, num_features):
|
23 |
+
super().__init__()
|
24 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
25 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
26 |
+
|
27 |
+
def forward(self, x, s):
|
28 |
+
h = self.fc(s)
|
29 |
+
h = h.view(h.size(0), h.size(1), 1)
|
30 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
31 |
+
return (1 + gamma) * self.norm(x) + beta
|
32 |
+
|
33 |
+
class AdaINResBlock1(torch.nn.Module):
|
34 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
35 |
+
super(AdaINResBlock1, self).__init__()
|
36 |
+
self.convs1 = nn.ModuleList([
|
37 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
38 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
39 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
40 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
42 |
+
padding=get_padding(kernel_size, dilation[2])))
|
43 |
+
])
|
44 |
+
self.convs1.apply(init_weights)
|
45 |
+
|
46 |
+
self.convs2 = nn.ModuleList([
|
47 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
48 |
+
padding=get_padding(kernel_size, 1))),
|
49 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
50 |
+
padding=get_padding(kernel_size, 1))),
|
51 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
52 |
+
padding=get_padding(kernel_size, 1)))
|
53 |
+
])
|
54 |
+
self.convs2.apply(init_weights)
|
55 |
+
|
56 |
+
self.adain1 = nn.ModuleList([
|
57 |
+
AdaIN1d(style_dim, channels),
|
58 |
+
AdaIN1d(style_dim, channels),
|
59 |
+
AdaIN1d(style_dim, channels),
|
60 |
+
])
|
61 |
+
|
62 |
+
self.adain2 = nn.ModuleList([
|
63 |
+
AdaIN1d(style_dim, channels),
|
64 |
+
AdaIN1d(style_dim, channels),
|
65 |
+
AdaIN1d(style_dim, channels),
|
66 |
+
])
|
67 |
+
|
68 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
69 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
70 |
+
|
71 |
+
|
72 |
+
def forward(self, x, s):
|
73 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
74 |
+
xt = n1(x, s)
|
75 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
76 |
+
xt = c1(xt)
|
77 |
+
xt = n2(xt, s)
|
78 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
79 |
+
xt = c2(xt)
|
80 |
+
x = xt + x
|
81 |
+
return x
|
82 |
+
|
83 |
+
def remove_weight_norm(self):
|
84 |
+
for l in self.convs1:
|
85 |
+
remove_weight_norm(l)
|
86 |
+
for l in self.convs2:
|
87 |
+
remove_weight_norm(l)
|
88 |
+
|
89 |
+
class TorchSTFT(torch.nn.Module):
|
90 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
91 |
+
super().__init__()
|
92 |
+
self.filter_length = filter_length
|
93 |
+
self.hop_length = hop_length
|
94 |
+
self.win_length = win_length
|
95 |
+
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
96 |
+
|
97 |
+
def transform(self, input_data):
|
98 |
+
forward_transform = torch.stft(
|
99 |
+
input_data,
|
100 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
101 |
+
return_complex=True)
|
102 |
+
|
103 |
+
return torch.abs(forward_transform), torch.angle(forward_transform)
|
104 |
+
|
105 |
+
def inverse(self, magnitude, phase):
|
106 |
+
inverse_transform = torch.istft(
|
107 |
+
magnitude * torch.exp(phase * 1j),
|
108 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
109 |
+
|
110 |
+
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
111 |
+
|
112 |
+
def forward(self, input_data):
|
113 |
+
self.magnitude, self.phase = self.transform(input_data)
|
114 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
115 |
+
return reconstruction
|
116 |
+
|
117 |
+
class SineGen(torch.nn.Module):
|
118 |
+
""" Definition of sine generator
|
119 |
+
SineGen(samp_rate, harmonic_num = 0,
|
120 |
+
sine_amp = 0.1, noise_std = 0.003,
|
121 |
+
voiced_threshold = 0,
|
122 |
+
flag_for_pulse=False)
|
123 |
+
samp_rate: sampling rate in Hz
|
124 |
+
harmonic_num: number of harmonic overtones (default 0)
|
125 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
126 |
+
noise_std: std of Gaussian noise (default 0.003)
|
127 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
128 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
129 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
130 |
+
segment is always sin(np.pi) or cos(0)
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
134 |
+
sine_amp=0.1, noise_std=0.003,
|
135 |
+
voiced_threshold=0,
|
136 |
+
flag_for_pulse=False):
|
137 |
+
super(SineGen, self).__init__()
|
138 |
+
self.sine_amp = sine_amp
|
139 |
+
self.noise_std = noise_std
|
140 |
+
self.harmonic_num = harmonic_num
|
141 |
+
self.dim = self.harmonic_num + 1
|
142 |
+
self.sampling_rate = samp_rate
|
143 |
+
self.voiced_threshold = voiced_threshold
|
144 |
+
self.flag_for_pulse = flag_for_pulse
|
145 |
+
self.upsample_scale = upsample_scale
|
146 |
+
|
147 |
+
def _f02uv(self, f0):
|
148 |
+
# generate uv signal
|
149 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
150 |
+
return uv
|
151 |
+
|
152 |
+
def _f02sine(self, f0_values):
|
153 |
+
""" f0_values: (batchsize, length, dim)
|
154 |
+
where dim indicates fundamental tone and overtones
|
155 |
+
"""
|
156 |
+
# convert to F0 in rad. The interger part n can be ignored
|
157 |
+
# because 2 * np.pi * n doesn't affect phase
|
158 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
159 |
+
|
160 |
+
# initial phase noise (no noise for fundamental component)
|
161 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
162 |
+
device=f0_values.device)
|
163 |
+
rand_ini[:, 0] = 0
|
164 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
165 |
+
|
166 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
167 |
+
if not self.flag_for_pulse:
|
168 |
+
# # for normal case
|
169 |
+
|
170 |
+
# # To prevent torch.cumsum numerical overflow,
|
171 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
172 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
173 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
174 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
175 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
176 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
177 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
178 |
+
|
179 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
180 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
181 |
+
scale_factor=1/self.upsample_scale,
|
182 |
+
mode="linear").transpose(1, 2)
|
183 |
+
|
184 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
185 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
186 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
187 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
188 |
+
|
189 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
190 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
191 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
192 |
+
sines = torch.sin(phase)
|
193 |
+
|
194 |
+
else:
|
195 |
+
# If necessary, make sure that the first time step of every
|
196 |
+
# voiced segments is sin(pi) or cos(0)
|
197 |
+
# This is used for pulse-train generation
|
198 |
+
|
199 |
+
# identify the last time step in unvoiced segments
|
200 |
+
uv = self._f02uv(f0_values)
|
201 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
202 |
+
uv_1[:, -1, :] = 1
|
203 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
204 |
+
|
205 |
+
# get the instantanouse phase
|
206 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
207 |
+
# different batch needs to be processed differently
|
208 |
+
for idx in range(f0_values.shape[0]):
|
209 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
210 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
211 |
+
# stores the accumulation of i.phase within
|
212 |
+
# each voiced segments
|
213 |
+
tmp_cumsum[idx, :, :] = 0
|
214 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
215 |
+
|
216 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
217 |
+
# within the previous voiced segment.
|
218 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
219 |
+
|
220 |
+
# get the sines
|
221 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
222 |
+
return sines
|
223 |
+
|
224 |
+
def forward(self, f0):
|
225 |
+
""" sine_tensor, uv = forward(f0)
|
226 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
227 |
+
f0 for unvoiced steps should be 0
|
228 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
229 |
+
output uv: tensor(batchsize=1, length, 1)
|
230 |
+
"""
|
231 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
232 |
+
device=f0.device)
|
233 |
+
# fundamental component
|
234 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
235 |
+
|
236 |
+
# generate sine waveforms
|
237 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
238 |
+
|
239 |
+
# generate uv signal
|
240 |
+
# uv = torch.ones(f0.shape)
|
241 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
242 |
+
uv = self._f02uv(f0)
|
243 |
+
|
244 |
+
# noise: for unvoiced should be similar to sine_amp
|
245 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
246 |
+
# . for voiced regions is self.noise_std
|
247 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
248 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
249 |
+
|
250 |
+
# first: set the unvoiced part to 0 by uv
|
251 |
+
# then: additive noise
|
252 |
+
sine_waves = sine_waves * uv + noise
|
253 |
+
return sine_waves, uv, noise
|
254 |
+
|
255 |
+
|
256 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
257 |
+
""" SourceModule for hn-nsf
|
258 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
259 |
+
add_noise_std=0.003, voiced_threshod=0)
|
260 |
+
sampling_rate: sampling_rate in Hz
|
261 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
262 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
263 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
264 |
+
note that amplitude of noise in unvoiced is decided
|
265 |
+
by sine_amp
|
266 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
267 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
268 |
+
F0_sampled (batchsize, length, 1)
|
269 |
+
Sine_source (batchsize, length, 1)
|
270 |
+
noise_source (batchsize, length 1)
|
271 |
+
uv (batchsize, length, 1)
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
275 |
+
add_noise_std=0.003, voiced_threshod=0):
|
276 |
+
super(SourceModuleHnNSF, self).__init__()
|
277 |
+
|
278 |
+
self.sine_amp = sine_amp
|
279 |
+
self.noise_std = add_noise_std
|
280 |
+
|
281 |
+
# to produce sine waveforms
|
282 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
283 |
+
sine_amp, add_noise_std, voiced_threshod)
|
284 |
+
|
285 |
+
# to merge source harmonics into a single excitation
|
286 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
287 |
+
self.l_tanh = torch.nn.Tanh()
|
288 |
+
|
289 |
+
def forward(self, x):
|
290 |
+
"""
|
291 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
292 |
+
F0_sampled (batchsize, length, 1)
|
293 |
+
Sine_source (batchsize, length, 1)
|
294 |
+
noise_source (batchsize, length 1)
|
295 |
+
"""
|
296 |
+
# source for harmonic branch
|
297 |
+
with torch.no_grad():
|
298 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
299 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
300 |
+
|
301 |
+
# source for noise branch, in the same shape as uv
|
302 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
303 |
+
return sine_merge, noise, uv
|
304 |
+
def padDiff(x):
|
305 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
306 |
+
|
307 |
+
|
308 |
+
class Generator(torch.nn.Module):
|
309 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
310 |
+
super(Generator, self).__init__()
|
311 |
+
|
312 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
313 |
+
self.num_upsamples = len(upsample_rates)
|
314 |
+
resblock = AdaINResBlock1
|
315 |
+
|
316 |
+
self.m_source = SourceModuleHnNSF(
|
317 |
+
sampling_rate=24000,
|
318 |
+
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
319 |
+
harmonic_num=8, voiced_threshod=10)
|
320 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
321 |
+
self.noise_convs = nn.ModuleList()
|
322 |
+
self.noise_res = nn.ModuleList()
|
323 |
+
|
324 |
+
self.ups = nn.ModuleList()
|
325 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
326 |
+
self.ups.append(weight_norm(
|
327 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
328 |
+
k, u, padding=(k-u)//2)))
|
329 |
+
|
330 |
+
self.resblocks = nn.ModuleList()
|
331 |
+
for i in range(len(self.ups)):
|
332 |
+
ch = upsample_initial_channel//(2**(i+1))
|
333 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
334 |
+
self.resblocks.append(resblock(ch, k, d, style_dim))
|
335 |
+
|
336 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
337 |
+
|
338 |
+
if i + 1 < len(upsample_rates): #
|
339 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
340 |
+
self.noise_convs.append(Conv1d(
|
341 |
+
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
342 |
+
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
343 |
+
else:
|
344 |
+
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
345 |
+
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
346 |
+
|
347 |
+
|
348 |
+
self.post_n_fft = gen_istft_n_fft
|
349 |
+
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
350 |
+
self.ups.apply(init_weights)
|
351 |
+
self.conv_post.apply(init_weights)
|
352 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
353 |
+
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
354 |
+
|
355 |
+
|
356 |
+
def forward(self, x, s, f0):
|
357 |
+
with torch.no_grad():
|
358 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
359 |
+
|
360 |
+
har_source, noi_source, uv = self.m_source(f0)
|
361 |
+
har_source = har_source.transpose(1, 2).squeeze(1)
|
362 |
+
har_spec, har_phase = self.stft.transform(har_source)
|
363 |
+
har = torch.cat([har_spec, har_phase], dim=1)
|
364 |
+
|
365 |
+
for i in range(self.num_upsamples):
|
366 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
367 |
+
x_source = self.noise_convs[i](har)
|
368 |
+
x_source = self.noise_res[i](x_source, s)
|
369 |
+
|
370 |
+
x = self.ups[i](x)
|
371 |
+
if i == self.num_upsamples - 1:
|
372 |
+
x = self.reflection_pad(x)
|
373 |
+
|
374 |
+
x = x + x_source
|
375 |
+
xs = None
|
376 |
+
for j in range(self.num_kernels):
|
377 |
+
if xs is None:
|
378 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
379 |
+
else:
|
380 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
381 |
+
x = xs / self.num_kernels
|
382 |
+
x = F.leaky_relu(x)
|
383 |
+
x = self.conv_post(x)
|
384 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
385 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
386 |
+
return self.stft.inverse(spec, phase)
|
387 |
+
|
388 |
+
def fw_phase(self, x, s):
|
389 |
+
for i in range(self.num_upsamples):
|
390 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
391 |
+
x = self.ups[i](x)
|
392 |
+
xs = None
|
393 |
+
for j in range(self.num_kernels):
|
394 |
+
if xs is None:
|
395 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
396 |
+
else:
|
397 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
398 |
+
x = xs / self.num_kernels
|
399 |
+
x = F.leaky_relu(x)
|
400 |
+
x = self.reflection_pad(x)
|
401 |
+
x = self.conv_post(x)
|
402 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
403 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
404 |
+
return spec, phase
|
405 |
+
|
406 |
+
def remove_weight_norm(self):
|
407 |
+
print('Removing weight norm...')
|
408 |
+
for l in self.ups:
|
409 |
+
remove_weight_norm(l)
|
410 |
+
for l in self.resblocks:
|
411 |
+
l.remove_weight_norm()
|
412 |
+
remove_weight_norm(self.conv_pre)
|
413 |
+
remove_weight_norm(self.conv_post)
|
414 |
+
|
415 |
+
|
416 |
+
class AdainResBlk1d(nn.Module):
|
417 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
418 |
+
upsample='none', dropout_p=0.0):
|
419 |
+
super().__init__()
|
420 |
+
self.actv = actv
|
421 |
+
self.upsample_type = upsample
|
422 |
+
self.upsample = UpSample1d(upsample)
|
423 |
+
self.learned_sc = dim_in != dim_out
|
424 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
425 |
+
self.dropout = nn.Dropout(dropout_p)
|
426 |
+
|
427 |
+
if upsample == 'none':
|
428 |
+
self.pool = nn.Identity()
|
429 |
+
else:
|
430 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
431 |
+
|
432 |
+
|
433 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
434 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
435 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
436 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
437 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
438 |
+
if self.learned_sc:
|
439 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
440 |
+
|
441 |
+
def _shortcut(self, x):
|
442 |
+
x = self.upsample(x)
|
443 |
+
if self.learned_sc:
|
444 |
+
x = self.conv1x1(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
def _residual(self, x, s):
|
448 |
+
x = self.norm1(x, s)
|
449 |
+
x = self.actv(x)
|
450 |
+
x = self.pool(x)
|
451 |
+
x = self.conv1(self.dropout(x))
|
452 |
+
x = self.norm2(x, s)
|
453 |
+
x = self.actv(x)
|
454 |
+
x = self.conv2(self.dropout(x))
|
455 |
+
return x
|
456 |
+
|
457 |
+
def forward(self, x, s):
|
458 |
+
out = self._residual(x, s)
|
459 |
+
out = (out + self._shortcut(x)) / np.sqrt(2)
|
460 |
+
return out
|
461 |
+
|
462 |
+
class UpSample1d(nn.Module):
|
463 |
+
def __init__(self, layer_type):
|
464 |
+
super().__init__()
|
465 |
+
self.layer_type = layer_type
|
466 |
+
|
467 |
+
def forward(self, x):
|
468 |
+
if self.layer_type == 'none':
|
469 |
+
return x
|
470 |
+
else:
|
471 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
472 |
+
|
473 |
+
class Decoder(nn.Module):
|
474 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
475 |
+
resblock_kernel_sizes = [3,7,11],
|
476 |
+
upsample_rates = [10, 6],
|
477 |
+
upsample_initial_channel=512,
|
478 |
+
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
479 |
+
upsample_kernel_sizes=[20, 12],
|
480 |
+
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
481 |
+
super().__init__()
|
482 |
+
|
483 |
+
self.decode = nn.ModuleList()
|
484 |
+
|
485 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
486 |
+
|
487 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
488 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
489 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
490 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
491 |
+
|
492 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
493 |
+
|
494 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
495 |
+
|
496 |
+
self.asr_res = nn.Sequential(
|
497 |
+
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
498 |
+
)
|
499 |
+
|
500 |
+
|
501 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
502 |
+
upsample_initial_channel, resblock_dilation_sizes,
|
503 |
+
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
504 |
+
|
505 |
+
def forward(self, asr, F0_curve, N, s):
|
506 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
507 |
+
N = self.N_conv(N.unsqueeze(1))
|
508 |
+
|
509 |
+
x = torch.cat([asr, F0, N], axis=1)
|
510 |
+
x = self.encode(x, s)
|
511 |
+
|
512 |
+
asr_res = self.asr_res(asr)
|
513 |
+
|
514 |
+
res = True
|
515 |
+
for block in self.decode:
|
516 |
+
if res:
|
517 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
518 |
+
x = block(x, s)
|
519 |
+
if block.upsample_type != "none":
|
520 |
+
res = False
|
521 |
+
|
522 |
+
x = self.generator(x, s, F0_curve)
|
523 |
+
return x
|
kokoro-v0_19.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a
|
3 |
+
size 327211206
|
kokoro.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import phonemizer
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def split_num(num):
|
6 |
+
num = num.group()
|
7 |
+
if '.' in num:
|
8 |
+
return num
|
9 |
+
elif ':' in num:
|
10 |
+
h, m = [int(n) for n in num.split(':')]
|
11 |
+
if m == 0:
|
12 |
+
return f"{h} o'clock"
|
13 |
+
elif m < 10:
|
14 |
+
return f'{h} oh {m}'
|
15 |
+
return f'{h} {m}'
|
16 |
+
year = int(num[:4])
|
17 |
+
if year < 1100 or year % 1000 < 10:
|
18 |
+
return num
|
19 |
+
left, right = num[:2], int(num[2:4])
|
20 |
+
s = 's' if num.endswith('s') else ''
|
21 |
+
if 100 <= year % 1000 <= 999:
|
22 |
+
if right == 0:
|
23 |
+
return f'{left} hundred{s}'
|
24 |
+
elif right < 10:
|
25 |
+
return f'{left} oh {right}{s}'
|
26 |
+
return f'{left} {right}{s}'
|
27 |
+
|
28 |
+
def flip_money(m):
|
29 |
+
m = m.group()
|
30 |
+
bill = 'dollar' if m[0] == '$' else 'pound'
|
31 |
+
if m[-1].isalpha():
|
32 |
+
return f'{m[1:]} {bill}s'
|
33 |
+
elif '.' not in m:
|
34 |
+
s = '' if m[1:] == '1' else 's'
|
35 |
+
return f'{m[1:]} {bill}{s}'
|
36 |
+
b, c = m[1:].split('.')
|
37 |
+
s = '' if b == '1' else 's'
|
38 |
+
c = int(c.ljust(2, '0'))
|
39 |
+
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
40 |
+
return f'{b} {bill}{s} and {c} {coins}'
|
41 |
+
|
42 |
+
def point_num(num):
|
43 |
+
a, b = num.group().split('.')
|
44 |
+
return ' point '.join([a, ' '.join(b)])
|
45 |
+
|
46 |
+
def normalize_text(text):
|
47 |
+
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
48 |
+
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
49 |
+
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
50 |
+
text = text.replace('(', '«').replace(')', '»')
|
51 |
+
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
52 |
+
text = text.replace(a, b+' ')
|
53 |
+
text = re.sub(r'[^\S \n]', ' ', text)
|
54 |
+
text = re.sub(r' +', ' ', text)
|
55 |
+
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
56 |
+
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
57 |
+
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
58 |
+
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
59 |
+
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
60 |
+
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
61 |
+
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
62 |
+
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
63 |
+
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
64 |
+
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
65 |
+
text = re.sub(r'\d*\.\d+', point_num, text)
|
66 |
+
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
67 |
+
text = re.sub(r'(?<=\d)S', ' S', text)
|
68 |
+
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
69 |
+
text = re.sub(r"(?<=X')S\b", 's', text)
|
70 |
+
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
71 |
+
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
72 |
+
return text.strip()
|
73 |
+
|
74 |
+
def get_vocab():
|
75 |
+
_pad = "$"
|
76 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
77 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
78 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
79 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
80 |
+
dicts = {}
|
81 |
+
for i in range(len((symbols))):
|
82 |
+
dicts[symbols[i]] = i
|
83 |
+
return dicts
|
84 |
+
|
85 |
+
VOCAB = get_vocab()
|
86 |
+
def tokenize(ps):
|
87 |
+
return [i for i in map(VOCAB.get, ps) if i is not None]
|
88 |
+
|
89 |
+
en_us = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
|
90 |
+
def phonemize(text, norm=True):
|
91 |
+
if norm:
|
92 |
+
text = normalize_text(text)
|
93 |
+
ps = en_us.phonemize([text])
|
94 |
+
ps = ps[0] if ps else ''
|
95 |
+
# https://en.wiktionary.org/wiki/kokoro#English
|
96 |
+
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
97 |
+
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
98 |
+
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
99 |
+
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
100 |
+
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
101 |
+
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
102 |
+
return ps.strip()
|
103 |
+
|
104 |
+
def length_to_mask(lengths):
|
105 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
106 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
107 |
+
return mask
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def forward(model, tokens, ref_s, speed):
|
111 |
+
device = ref_s.device
|
112 |
+
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
113 |
+
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
114 |
+
text_mask = length_to_mask(input_lengths).to(device)
|
115 |
+
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
116 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
117 |
+
s = ref_s[:, 128:]
|
118 |
+
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
119 |
+
x, _ = model.predictor.lstm(d)
|
120 |
+
duration = model.predictor.duration_proj(x)
|
121 |
+
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
122 |
+
pred_dur = torch.round(duration).clamp(min=1).long()
|
123 |
+
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
124 |
+
c_frame = 0
|
125 |
+
for i in range(pred_aln_trg.size(0)):
|
126 |
+
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
127 |
+
c_frame += pred_dur[0,i].item()
|
128 |
+
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
129 |
+
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
130 |
+
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
131 |
+
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
132 |
+
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
133 |
+
|
134 |
+
def generate(model, text, voicepack, speed=1):
|
135 |
+
ps = phonemize(text)
|
136 |
+
tokens = tokenize(ps)
|
137 |
+
if not tokens:
|
138 |
+
return None
|
139 |
+
elif len(tokens) > 510:
|
140 |
+
tokens = tokens[:510]
|
141 |
+
print('Truncated to 510 tokens')
|
142 |
+
ref_s = voicepack[len(tokens)]
|
143 |
+
out = forward(model, tokens, ref_s, speed)
|
144 |
+
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
145 |
+
return out, ps
|
models.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
+
from istftnet import Decoder
|
3 |
+
from munch import Munch
|
4 |
+
from plbert import load_plbert
|
5 |
+
from torch.nn.utils import weight_norm, spectral_norm
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
import os.path as osp
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
class LearnedDownSample(nn.Module):
|
14 |
+
def __init__(self, layer_type, dim_in):
|
15 |
+
super().__init__()
|
16 |
+
self.layer_type = layer_type
|
17 |
+
|
18 |
+
if self.layer_type == 'none':
|
19 |
+
self.conv = nn.Identity()
|
20 |
+
elif self.layer_type == 'timepreserve':
|
21 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
22 |
+
elif self.layer_type == 'half':
|
23 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
24 |
+
else:
|
25 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.conv(x)
|
29 |
+
|
30 |
+
class LearnedUpSample(nn.Module):
|
31 |
+
def __init__(self, layer_type, dim_in):
|
32 |
+
super().__init__()
|
33 |
+
self.layer_type = layer_type
|
34 |
+
|
35 |
+
if self.layer_type == 'none':
|
36 |
+
self.conv = nn.Identity()
|
37 |
+
elif self.layer_type == 'timepreserve':
|
38 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
39 |
+
elif self.layer_type == 'half':
|
40 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
41 |
+
else:
|
42 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
43 |
+
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
return self.conv(x)
|
47 |
+
|
48 |
+
class DownSample(nn.Module):
|
49 |
+
def __init__(self, layer_type):
|
50 |
+
super().__init__()
|
51 |
+
self.layer_type = layer_type
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
if self.layer_type == 'none':
|
55 |
+
return x
|
56 |
+
elif self.layer_type == 'timepreserve':
|
57 |
+
return F.avg_pool2d(x, (2, 1))
|
58 |
+
elif self.layer_type == 'half':
|
59 |
+
if x.shape[-1] % 2 != 0:
|
60 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
61 |
+
return F.avg_pool2d(x, 2)
|
62 |
+
else:
|
63 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
64 |
+
|
65 |
+
|
66 |
+
class UpSample(nn.Module):
|
67 |
+
def __init__(self, layer_type):
|
68 |
+
super().__init__()
|
69 |
+
self.layer_type = layer_type
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
if self.layer_type == 'none':
|
73 |
+
return x
|
74 |
+
elif self.layer_type == 'timepreserve':
|
75 |
+
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
76 |
+
elif self.layer_type == 'half':
|
77 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
78 |
+
else:
|
79 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
80 |
+
|
81 |
+
|
82 |
+
class ResBlk(nn.Module):
|
83 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
84 |
+
normalize=False, downsample='none'):
|
85 |
+
super().__init__()
|
86 |
+
self.actv = actv
|
87 |
+
self.normalize = normalize
|
88 |
+
self.downsample = DownSample(downsample)
|
89 |
+
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
90 |
+
self.learned_sc = dim_in != dim_out
|
91 |
+
self._build_weights(dim_in, dim_out)
|
92 |
+
|
93 |
+
def _build_weights(self, dim_in, dim_out):
|
94 |
+
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
95 |
+
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
96 |
+
if self.normalize:
|
97 |
+
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
98 |
+
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
99 |
+
if self.learned_sc:
|
100 |
+
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
101 |
+
|
102 |
+
def _shortcut(self, x):
|
103 |
+
if self.learned_sc:
|
104 |
+
x = self.conv1x1(x)
|
105 |
+
if self.downsample:
|
106 |
+
x = self.downsample(x)
|
107 |
+
return x
|
108 |
+
|
109 |
+
def _residual(self, x):
|
110 |
+
if self.normalize:
|
111 |
+
x = self.norm1(x)
|
112 |
+
x = self.actv(x)
|
113 |
+
x = self.conv1(x)
|
114 |
+
x = self.downsample_res(x)
|
115 |
+
if self.normalize:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = self.actv(x)
|
118 |
+
x = self.conv2(x)
|
119 |
+
return x
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
x = self._shortcut(x) + self._residual(x)
|
123 |
+
return x / np.sqrt(2) # unit variance
|
124 |
+
|
125 |
+
class LinearNorm(torch.nn.Module):
|
126 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
127 |
+
super(LinearNorm, self).__init__()
|
128 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
129 |
+
|
130 |
+
torch.nn.init.xavier_uniform_(
|
131 |
+
self.linear_layer.weight,
|
132 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
return self.linear_layer(x)
|
136 |
+
|
137 |
+
class Discriminator2d(nn.Module):
|
138 |
+
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
|
139 |
+
super().__init__()
|
140 |
+
blocks = []
|
141 |
+
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
142 |
+
|
143 |
+
for lid in range(repeat_num):
|
144 |
+
dim_out = min(dim_in*2, max_conv_dim)
|
145 |
+
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
146 |
+
dim_in = dim_out
|
147 |
+
|
148 |
+
blocks += [nn.LeakyReLU(0.2)]
|
149 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
150 |
+
blocks += [nn.LeakyReLU(0.2)]
|
151 |
+
blocks += [nn.AdaptiveAvgPool2d(1)]
|
152 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
|
153 |
+
self.main = nn.Sequential(*blocks)
|
154 |
+
|
155 |
+
def get_feature(self, x):
|
156 |
+
features = []
|
157 |
+
for l in self.main:
|
158 |
+
x = l(x)
|
159 |
+
features.append(x)
|
160 |
+
out = features[-1]
|
161 |
+
out = out.view(out.size(0), -1) # (batch, num_domains)
|
162 |
+
return out, features
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
out, features = self.get_feature(x)
|
166 |
+
out = out.squeeze() # (batch)
|
167 |
+
return out, features
|
168 |
+
|
169 |
+
class ResBlk1d(nn.Module):
|
170 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
171 |
+
normalize=False, downsample='none', dropout_p=0.2):
|
172 |
+
super().__init__()
|
173 |
+
self.actv = actv
|
174 |
+
self.normalize = normalize
|
175 |
+
self.downsample_type = downsample
|
176 |
+
self.learned_sc = dim_in != dim_out
|
177 |
+
self._build_weights(dim_in, dim_out)
|
178 |
+
self.dropout_p = dropout_p
|
179 |
+
|
180 |
+
if self.downsample_type == 'none':
|
181 |
+
self.pool = nn.Identity()
|
182 |
+
else:
|
183 |
+
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
184 |
+
|
185 |
+
def _build_weights(self, dim_in, dim_out):
|
186 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
187 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
188 |
+
if self.normalize:
|
189 |
+
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
190 |
+
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
191 |
+
if self.learned_sc:
|
192 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
193 |
+
|
194 |
+
def downsample(self, x):
|
195 |
+
if self.downsample_type == 'none':
|
196 |
+
return x
|
197 |
+
else:
|
198 |
+
if x.shape[-1] % 2 != 0:
|
199 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
200 |
+
return F.avg_pool1d(x, 2)
|
201 |
+
|
202 |
+
def _shortcut(self, x):
|
203 |
+
if self.learned_sc:
|
204 |
+
x = self.conv1x1(x)
|
205 |
+
x = self.downsample(x)
|
206 |
+
return x
|
207 |
+
|
208 |
+
def _residual(self, x):
|
209 |
+
if self.normalize:
|
210 |
+
x = self.norm1(x)
|
211 |
+
x = self.actv(x)
|
212 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
213 |
+
|
214 |
+
x = self.conv1(x)
|
215 |
+
x = self.pool(x)
|
216 |
+
if self.normalize:
|
217 |
+
x = self.norm2(x)
|
218 |
+
|
219 |
+
x = self.actv(x)
|
220 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
221 |
+
|
222 |
+
x = self.conv2(x)
|
223 |
+
return x
|
224 |
+
|
225 |
+
def forward(self, x):
|
226 |
+
x = self._shortcut(x) + self._residual(x)
|
227 |
+
return x / np.sqrt(2) # unit variance
|
228 |
+
|
229 |
+
class LayerNorm(nn.Module):
|
230 |
+
def __init__(self, channels, eps=1e-5):
|
231 |
+
super().__init__()
|
232 |
+
self.channels = channels
|
233 |
+
self.eps = eps
|
234 |
+
|
235 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
236 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
237 |
+
|
238 |
+
def forward(self, x):
|
239 |
+
x = x.transpose(1, -1)
|
240 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
241 |
+
return x.transpose(1, -1)
|
242 |
+
|
243 |
+
class TextEncoder(nn.Module):
|
244 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
245 |
+
super().__init__()
|
246 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
247 |
+
|
248 |
+
padding = (kernel_size - 1) // 2
|
249 |
+
self.cnn = nn.ModuleList()
|
250 |
+
for _ in range(depth):
|
251 |
+
self.cnn.append(nn.Sequential(
|
252 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
253 |
+
LayerNorm(channels),
|
254 |
+
actv,
|
255 |
+
nn.Dropout(0.2),
|
256 |
+
))
|
257 |
+
# self.cnn = nn.Sequential(*self.cnn)
|
258 |
+
|
259 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
260 |
+
|
261 |
+
def forward(self, x, input_lengths, m):
|
262 |
+
x = self.embedding(x) # [B, T, emb]
|
263 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
264 |
+
m = m.to(input_lengths.device).unsqueeze(1)
|
265 |
+
x.masked_fill_(m, 0.0)
|
266 |
+
|
267 |
+
for c in self.cnn:
|
268 |
+
x = c(x)
|
269 |
+
x.masked_fill_(m, 0.0)
|
270 |
+
|
271 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
272 |
+
|
273 |
+
input_lengths = input_lengths.cpu().numpy()
|
274 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
275 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
276 |
+
|
277 |
+
self.lstm.flatten_parameters()
|
278 |
+
x, _ = self.lstm(x)
|
279 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
280 |
+
x, batch_first=True)
|
281 |
+
|
282 |
+
x = x.transpose(-1, -2)
|
283 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
284 |
+
|
285 |
+
x_pad[:, :, :x.shape[-1]] = x
|
286 |
+
x = x_pad.to(x.device)
|
287 |
+
|
288 |
+
x.masked_fill_(m, 0.0)
|
289 |
+
|
290 |
+
return x
|
291 |
+
|
292 |
+
def inference(self, x):
|
293 |
+
x = self.embedding(x)
|
294 |
+
x = x.transpose(1, 2)
|
295 |
+
x = self.cnn(x)
|
296 |
+
x = x.transpose(1, 2)
|
297 |
+
self.lstm.flatten_parameters()
|
298 |
+
x, _ = self.lstm(x)
|
299 |
+
return x
|
300 |
+
|
301 |
+
def length_to_mask(self, lengths):
|
302 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
303 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
304 |
+
return mask
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
class AdaIN1d(nn.Module):
|
309 |
+
def __init__(self, style_dim, num_features):
|
310 |
+
super().__init__()
|
311 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
312 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
313 |
+
|
314 |
+
def forward(self, x, s):
|
315 |
+
h = self.fc(s)
|
316 |
+
h = h.view(h.size(0), h.size(1), 1)
|
317 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
318 |
+
return (1 + gamma) * self.norm(x) + beta
|
319 |
+
|
320 |
+
class UpSample1d(nn.Module):
|
321 |
+
def __init__(self, layer_type):
|
322 |
+
super().__init__()
|
323 |
+
self.layer_type = layer_type
|
324 |
+
|
325 |
+
def forward(self, x):
|
326 |
+
if self.layer_type == 'none':
|
327 |
+
return x
|
328 |
+
else:
|
329 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
330 |
+
|
331 |
+
class AdainResBlk1d(nn.Module):
|
332 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
333 |
+
upsample='none', dropout_p=0.0):
|
334 |
+
super().__init__()
|
335 |
+
self.actv = actv
|
336 |
+
self.upsample_type = upsample
|
337 |
+
self.upsample = UpSample1d(upsample)
|
338 |
+
self.learned_sc = dim_in != dim_out
|
339 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
340 |
+
self.dropout = nn.Dropout(dropout_p)
|
341 |
+
|
342 |
+
if upsample == 'none':
|
343 |
+
self.pool = nn.Identity()
|
344 |
+
else:
|
345 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
346 |
+
|
347 |
+
|
348 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
349 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
350 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
351 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
352 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
353 |
+
if self.learned_sc:
|
354 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
355 |
+
|
356 |
+
def _shortcut(self, x):
|
357 |
+
x = self.upsample(x)
|
358 |
+
if self.learned_sc:
|
359 |
+
x = self.conv1x1(x)
|
360 |
+
return x
|
361 |
+
|
362 |
+
def _residual(self, x, s):
|
363 |
+
x = self.norm1(x, s)
|
364 |
+
x = self.actv(x)
|
365 |
+
x = self.pool(x)
|
366 |
+
x = self.conv1(self.dropout(x))
|
367 |
+
x = self.norm2(x, s)
|
368 |
+
x = self.actv(x)
|
369 |
+
x = self.conv2(self.dropout(x))
|
370 |
+
return x
|
371 |
+
|
372 |
+
def forward(self, x, s):
|
373 |
+
out = self._residual(x, s)
|
374 |
+
out = (out + self._shortcut(x)) / np.sqrt(2)
|
375 |
+
return out
|
376 |
+
|
377 |
+
class AdaLayerNorm(nn.Module):
|
378 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
379 |
+
super().__init__()
|
380 |
+
self.channels = channels
|
381 |
+
self.eps = eps
|
382 |
+
|
383 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
384 |
+
|
385 |
+
def forward(self, x, s):
|
386 |
+
x = x.transpose(-1, -2)
|
387 |
+
x = x.transpose(1, -1)
|
388 |
+
|
389 |
+
h = self.fc(s)
|
390 |
+
h = h.view(h.size(0), h.size(1), 1)
|
391 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
392 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
393 |
+
|
394 |
+
|
395 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
396 |
+
x = (1 + gamma) * x + beta
|
397 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
398 |
+
|
399 |
+
class ProsodyPredictor(nn.Module):
|
400 |
+
|
401 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
402 |
+
super().__init__()
|
403 |
+
|
404 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
405 |
+
d_model=d_hid,
|
406 |
+
nlayers=nlayers,
|
407 |
+
dropout=dropout)
|
408 |
+
|
409 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
410 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
411 |
+
|
412 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
413 |
+
self.F0 = nn.ModuleList()
|
414 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
415 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
416 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
417 |
+
|
418 |
+
self.N = nn.ModuleList()
|
419 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
420 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
421 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
422 |
+
|
423 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
424 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
425 |
+
|
426 |
+
|
427 |
+
def forward(self, texts, style, text_lengths, alignment, m):
|
428 |
+
d = self.text_encoder(texts, style, text_lengths, m)
|
429 |
+
|
430 |
+
batch_size = d.shape[0]
|
431 |
+
text_size = d.shape[1]
|
432 |
+
|
433 |
+
# predict duration
|
434 |
+
input_lengths = text_lengths.cpu().numpy()
|
435 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
436 |
+
d, input_lengths, batch_first=True, enforce_sorted=False)
|
437 |
+
|
438 |
+
m = m.to(text_lengths.device).unsqueeze(1)
|
439 |
+
|
440 |
+
self.lstm.flatten_parameters()
|
441 |
+
x, _ = self.lstm(x)
|
442 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
443 |
+
x, batch_first=True)
|
444 |
+
|
445 |
+
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
446 |
+
|
447 |
+
x_pad[:, :x.shape[1], :] = x
|
448 |
+
x = x_pad.to(x.device)
|
449 |
+
|
450 |
+
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
451 |
+
|
452 |
+
en = (d.transpose(-1, -2) @ alignment)
|
453 |
+
|
454 |
+
return duration.squeeze(-1), en
|
455 |
+
|
456 |
+
def F0Ntrain(self, x, s):
|
457 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
458 |
+
|
459 |
+
F0 = x.transpose(-1, -2)
|
460 |
+
for block in self.F0:
|
461 |
+
F0 = block(F0, s)
|
462 |
+
F0 = self.F0_proj(F0)
|
463 |
+
|
464 |
+
N = x.transpose(-1, -2)
|
465 |
+
for block in self.N:
|
466 |
+
N = block(N, s)
|
467 |
+
N = self.N_proj(N)
|
468 |
+
|
469 |
+
return F0.squeeze(1), N.squeeze(1)
|
470 |
+
|
471 |
+
def length_to_mask(self, lengths):
|
472 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
473 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
474 |
+
return mask
|
475 |
+
|
476 |
+
class DurationEncoder(nn.Module):
|
477 |
+
|
478 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
479 |
+
super().__init__()
|
480 |
+
self.lstms = nn.ModuleList()
|
481 |
+
for _ in range(nlayers):
|
482 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
483 |
+
d_model // 2,
|
484 |
+
num_layers=1,
|
485 |
+
batch_first=True,
|
486 |
+
bidirectional=True,
|
487 |
+
dropout=dropout))
|
488 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
489 |
+
|
490 |
+
|
491 |
+
self.dropout = dropout
|
492 |
+
self.d_model = d_model
|
493 |
+
self.sty_dim = sty_dim
|
494 |
+
|
495 |
+
def forward(self, x, style, text_lengths, m):
|
496 |
+
masks = m.to(text_lengths.device)
|
497 |
+
|
498 |
+
x = x.permute(2, 0, 1)
|
499 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
500 |
+
x = torch.cat([x, s], axis=-1)
|
501 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
502 |
+
|
503 |
+
x = x.transpose(0, 1)
|
504 |
+
input_lengths = text_lengths.cpu().numpy()
|
505 |
+
x = x.transpose(-1, -2)
|
506 |
+
|
507 |
+
for block in self.lstms:
|
508 |
+
if isinstance(block, AdaLayerNorm):
|
509 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
510 |
+
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
511 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
512 |
+
else:
|
513 |
+
x = x.transpose(-1, -2)
|
514 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
515 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
516 |
+
block.flatten_parameters()
|
517 |
+
x, _ = block(x)
|
518 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
519 |
+
x, batch_first=True)
|
520 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
521 |
+
x = x.transpose(-1, -2)
|
522 |
+
|
523 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
524 |
+
|
525 |
+
x_pad[:, :, :x.shape[-1]] = x
|
526 |
+
x = x_pad.to(x.device)
|
527 |
+
|
528 |
+
return x.transpose(-1, -2)
|
529 |
+
|
530 |
+
def inference(self, x, style):
|
531 |
+
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
532 |
+
style = style.expand(x.shape[0], x.shape[1], -1)
|
533 |
+
x = torch.cat([x, style], axis=-1)
|
534 |
+
src = self.pos_encoder(x)
|
535 |
+
output = self.transformer_encoder(src).transpose(0, 1)
|
536 |
+
return output
|
537 |
+
|
538 |
+
def length_to_mask(self, lengths):
|
539 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
540 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
541 |
+
return mask
|
542 |
+
|
543 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
544 |
+
def recursive_munch(d):
|
545 |
+
if isinstance(d, dict):
|
546 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
547 |
+
elif isinstance(d, list):
|
548 |
+
return [recursive_munch(v) for v in d]
|
549 |
+
else:
|
550 |
+
return d
|
551 |
+
|
552 |
+
def build_model(path, device):
|
553 |
+
args = recursive_munch(dict(
|
554 |
+
decoder=dict(
|
555 |
+
type='istftnet', upsample_kernel_sizes=[20, 12], upsample_rates=[10, 6], gen_istft_hop_size=5, gen_istft_n_fft=20,
|
556 |
+
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], resblock_kernel_sizes=[3, 7, 11], upsample_initial_channel=512,
|
557 |
+
),
|
558 |
+
dim_in=64, dropout=0.2, hidden_dim=512, max_conv_dim=512, max_dur=50,
|
559 |
+
multispeaker=True, n_layer=3, n_mels=80, n_token=178, style_dim=128
|
560 |
+
))
|
561 |
+
assert args.decoder.type == 'istftnet', 'Decoder type unknown'
|
562 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
563 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
564 |
+
upsample_rates = args.decoder.upsample_rates,
|
565 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
566 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
567 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
568 |
+
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
569 |
+
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
570 |
+
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
571 |
+
bert = load_plbert()
|
572 |
+
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
573 |
+
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
574 |
+
for child in parent.children():
|
575 |
+
if isinstance(child, nn.RNNBase):
|
576 |
+
child.flatten_parameters()
|
577 |
+
model = Munch(
|
578 |
+
bert=bert.to(device).eval(),
|
579 |
+
bert_encoder=bert_encoder.to(device).eval(),
|
580 |
+
predictor=predictor.to(device).eval(),
|
581 |
+
decoder=decoder.to(device).eval(),
|
582 |
+
text_encoder=text_encoder.to(device).eval(),
|
583 |
+
)
|
584 |
+
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
585 |
+
assert key in model, key
|
586 |
+
try:
|
587 |
+
model[key].load_state_dict(state_dict)
|
588 |
+
except:
|
589 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
590 |
+
model[key].load_state_dict(state_dict, strict=False)
|
591 |
+
return model
|
plbert.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
|
2 |
+
from transformers import AlbertConfig, AlbertModel
|
3 |
+
|
4 |
+
class CustomAlbert(AlbertModel):
|
5 |
+
def forward(self, *args, **kwargs):
|
6 |
+
# Call the original forward method
|
7 |
+
outputs = super().forward(*args, **kwargs)
|
8 |
+
# Only return the last_hidden_state
|
9 |
+
return outputs.last_hidden_state
|
10 |
+
|
11 |
+
def load_plbert():
|
12 |
+
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
|
13 |
+
albert_base_configuration = AlbertConfig(**plbert_config)
|
14 |
+
bert = CustomAlbert(albert_base_configuration)
|
15 |
+
return bert
|
voices/af.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fad4192fd8a840f925b0e3fc2be54e20531f91a9ac816a485b7992ca0bd83ebf
|
3 |
+
size 524355
|
voices/af_bella.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2828c6c2f94275ef3441a2edfcf48293298ee0f9b56ce70fb2e344345487b922
|
3 |
+
size 524449
|
voices/af_sarah.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba7918c4ace6ace4221e7e01eb3a6d16596cba9729850551c758cd2ad3a4cd08
|
3 |
+
size 524449
|