yunyangx commited on
Commit
4e4a175
·
1 Parent(s): bc658ea
Files changed (4) hide show
  1. utils/.DS_Store +0 -0
  2. utils/__init__.py +0 -0
  3. utils/tools gradio.py +193 -0
  4. utils/tools.py +409 -0
utils/.DS_Store ADDED
Binary file (6.15 kB). View file
 
utils/__init__.py ADDED
File without changes
utils/tools gradio.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+ import torch
5
+ from PIL import Image
6
+
7
+
8
+ def fast_process(
9
+ annotations,
10
+ image,
11
+ device,
12
+ scale,
13
+ better_quality=False,
14
+ mask_random_color=True,
15
+ bbox=None,
16
+ points=None,
17
+ use_retina=True,
18
+ withContours=True,
19
+ ):
20
+ if isinstance(annotations[0], dict):
21
+ annotations = [annotation["segmentation"] for annotation in annotations]
22
+
23
+ original_h = image.height
24
+ original_w = image.width
25
+ if better_quality:
26
+ if isinstance(annotations[0], torch.Tensor):
27
+ annotations = np.array(annotations.cpu())
28
+ for i, mask in enumerate(annotations):
29
+ mask = cv2.morphologyEx(
30
+ mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
31
+ )
32
+ annotations[i] = cv2.morphologyEx(
33
+ mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
34
+ )
35
+ if device == "cpu":
36
+ annotations = np.array(annotations)
37
+ inner_mask = fast_show_mask(
38
+ annotations,
39
+ plt.gca(),
40
+ random_color=mask_random_color,
41
+ bbox=bbox,
42
+ retinamask=use_retina,
43
+ target_height=original_h,
44
+ target_width=original_w,
45
+ )
46
+ else:
47
+ if isinstance(annotations[0], np.ndarray):
48
+ annotations = np.array(annotations)
49
+ annotations = torch.from_numpy(annotations)
50
+ inner_mask = fast_show_mask_gpu(
51
+ annotations,
52
+ plt.gca(),
53
+ random_color=mask_random_color,
54
+ bbox=bbox,
55
+ retinamask=use_retina,
56
+ target_height=original_h,
57
+ target_width=original_w,
58
+ )
59
+ if isinstance(annotations, torch.Tensor):
60
+ annotations = annotations.cpu().numpy()
61
+
62
+ if withContours:
63
+ contour_all = []
64
+ temp = np.zeros((original_h, original_w, 1))
65
+ for i, mask in enumerate(annotations):
66
+ if type(mask) == dict:
67
+ mask = mask["segmentation"]
68
+ annotation = mask.astype(np.uint8)
69
+ if use_retina == False:
70
+ annotation = cv2.resize(
71
+ annotation,
72
+ (original_w, original_h),
73
+ interpolation=cv2.INTER_NEAREST,
74
+ )
75
+ contours, _ = cv2.findContours(
76
+ annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
77
+ )
78
+ for contour in contours:
79
+ contour_all.append(contour)
80
+ cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
81
+ color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
82
+ contour_mask = temp / 255 * color.reshape(1, 1, -1)
83
+
84
+ image = image.convert("RGBA")
85
+ overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA")
86
+ image.paste(overlay_inner, (0, 0), overlay_inner)
87
+
88
+ if withContours:
89
+ overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA")
90
+ image.paste(overlay_contour, (0, 0), overlay_contour)
91
+
92
+ return image
93
+
94
+
95
+ # CPU post process
96
+ def fast_show_mask(
97
+ annotation,
98
+ ax,
99
+ random_color=False,
100
+ bbox=None,
101
+ retinamask=True,
102
+ target_height=960,
103
+ target_width=960,
104
+ ):
105
+ mask_sum = annotation.shape[0]
106
+ height = annotation.shape[1]
107
+ weight = annotation.shape[2]
108
+ # annotation is sorted by area
109
+ areas = np.sum(annotation, axis=(1, 2))
110
+ sorted_indices = np.argsort(areas)[::1]
111
+ annotation = annotation[sorted_indices]
112
+
113
+ index = (annotation != 0).argmax(axis=0)
114
+ if random_color == True:
115
+ color = np.random.random((mask_sum, 1, 1, 3))
116
+ else:
117
+ color = np.ones((mask_sum, 1, 1, 3)) * np.array(
118
+ [30 / 255, 144 / 255, 255 / 255]
119
+ )
120
+ transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
121
+ visual = np.concatenate([color, transparency], axis=-1)
122
+ mask_image = np.expand_dims(annotation, -1) * visual
123
+
124
+ mask = np.zeros((height, weight, 4))
125
+
126
+ h_indices, w_indices = np.meshgrid(
127
+ np.arange(height), np.arange(weight), indexing="ij"
128
+ )
129
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
130
+
131
+ mask[h_indices, w_indices, :] = mask_image[indices]
132
+ if bbox is not None:
133
+ x1, y1, x2, y2 = bbox
134
+ ax.add_patch(
135
+ plt.Rectangle(
136
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
137
+ )
138
+ )
139
+
140
+ if retinamask == False:
141
+ mask = cv2.resize(
142
+ mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST
143
+ )
144
+
145
+ return mask
146
+
147
+
148
+ def fast_show_mask_gpu(
149
+ annotation,
150
+ ax,
151
+ random_color=False,
152
+ bbox=None,
153
+ retinamask=True,
154
+ target_height=960,
155
+ target_width=960,
156
+ ):
157
+ device = annotation.device
158
+ mask_sum = annotation.shape[0]
159
+ height = annotation.shape[1]
160
+ weight = annotation.shape[2]
161
+ areas = torch.sum(annotation, dim=(1, 2))
162
+ sorted_indices = torch.argsort(areas, descending=False)
163
+ annotation = annotation[sorted_indices]
164
+ # find the first non-zero subscript for each position
165
+ index = (annotation != 0).to(torch.long).argmax(dim=0)
166
+ if random_color == True:
167
+ color = torch.rand((mask_sum, 1, 1, 3)).to(device)
168
+ else:
169
+ color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
170
+ [30 / 255, 144 / 255, 255 / 255]
171
+ ).to(device)
172
+ transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
173
+ visual = torch.cat([color, transparency], dim=-1)
174
+ mask_image = torch.unsqueeze(annotation, -1) * visual
175
+ # index
176
+ mask = torch.zeros((height, weight, 4)).to(device)
177
+ h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
178
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
179
+ # make updates based on indices
180
+ mask[h_indices, w_indices, :] = mask_image[indices]
181
+ mask_cpu = mask.cpu().numpy()
182
+ if bbox is not None:
183
+ x1, y1, x2, y2 = bbox
184
+ ax.add_patch(
185
+ plt.Rectangle(
186
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
187
+ )
188
+ )
189
+ if retinamask == False:
190
+ mask_cpu = cv2.resize(
191
+ mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
192
+ )
193
+ return mask_cpu
utils/tools.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ import cv2
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import torch
8
+ from PIL import Image
9
+
10
+
11
+ def convert_box_xywh_to_xyxy(box):
12
+ x1 = box[0]
13
+ y1 = box[1]
14
+ x2 = box[0] + box[2]
15
+ y2 = box[1] + box[3]
16
+ return [x1, y1, x2, y2]
17
+
18
+
19
+ def segment_image(image, bbox):
20
+ image_array = np.array(image)
21
+ segmented_image_array = np.zeros_like(image_array)
22
+ x1, y1, x2, y2 = bbox
23
+ segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
24
+ segmented_image = Image.fromarray(segmented_image_array)
25
+ black_image = Image.new("RGB", image.size, (255, 255, 255))
26
+ # transparency_mask = np.zeros_like((), dtype=np.uint8)
27
+ transparency_mask = np.zeros(
28
+ (image_array.shape[0], image_array.shape[1]), dtype=np.uint8
29
+ )
30
+ transparency_mask[y1:y2, x1:x2] = 255
31
+ transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
32
+ black_image.paste(segmented_image, mask=transparency_mask_image)
33
+ return black_image
34
+
35
+
36
+ def format_results(masks, scores, logits, filter=0):
37
+ annotations = []
38
+ n = len(scores)
39
+ for i in range(n):
40
+ annotation = {}
41
+
42
+ mask = masks[i]
43
+ tmp = np.where(mask != 0)
44
+ if np.sum(mask) < filter:
45
+ continue
46
+ annotation["id"] = i
47
+ annotation["segmentation"] = mask
48
+ annotation["bbox"] = [
49
+ np.min(tmp[0]),
50
+ np.min(tmp[1]),
51
+ np.max(tmp[1]),
52
+ np.max(tmp[0]),
53
+ ]
54
+ annotation["score"] = scores[i]
55
+ annotation["area"] = annotation["segmentation"].sum()
56
+ annotations.append(annotation)
57
+ return annotations
58
+
59
+
60
+ def filter_masks(annotations): # filter the overlap mask
61
+ annotations.sort(key=lambda x: x["area"], reverse=True)
62
+ to_remove = set()
63
+ for i in range(0, len(annotations)):
64
+ a = annotations[i]
65
+ for j in range(i + 1, len(annotations)):
66
+ b = annotations[j]
67
+ if i != j and j not in to_remove:
68
+ # check if
69
+ if b["area"] < a["area"]:
70
+ if (a["segmentation"] & b["segmentation"]).sum() / b[
71
+ "segmentation"
72
+ ].sum() > 0.8:
73
+ to_remove.add(j)
74
+
75
+ return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
76
+
77
+
78
+ def get_bbox_from_mask(mask):
79
+ mask = mask.astype(np.uint8)
80
+ contours, hierarchy = cv2.findContours(
81
+ mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
82
+ )
83
+ x1, y1, w, h = cv2.boundingRect(contours[0])
84
+ x2, y2 = x1 + w, y1 + h
85
+ if len(contours) > 1:
86
+ for b in contours:
87
+ x_t, y_t, w_t, h_t = cv2.boundingRect(b)
88
+ # 将多个bbox合并成一个
89
+ x1 = min(x1, x_t)
90
+ y1 = min(y1, y_t)
91
+ x2 = max(x2, x_t + w_t)
92
+ y2 = max(y2, y_t + h_t)
93
+ h = y2 - y1
94
+ w = x2 - x1
95
+ return [x1, y1, x2, y2]
96
+
97
+
98
+ def fast_process(
99
+ annotations, args, mask_random_color, bbox=None, points=None, edges=False
100
+ ):
101
+ if isinstance(annotations[0], dict):
102
+ annotations = [annotation["segmentation"] for annotation in annotations]
103
+ result_name = os.path.basename(args.img_path)
104
+ image = cv2.imread(args.img_path)
105
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
106
+ original_h = image.shape[0]
107
+ original_w = image.shape[1]
108
+ if sys.platform == "darwin":
109
+ plt.switch_backend("TkAgg")
110
+ plt.figure(figsize=(original_w / 100, original_h / 100))
111
+ # Add subplot with no margin.
112
+ plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
113
+ plt.margins(0, 0)
114
+ plt.gca().xaxis.set_major_locator(plt.NullLocator())
115
+ plt.gca().yaxis.set_major_locator(plt.NullLocator())
116
+ plt.imshow(image)
117
+ if args.better_quality == True:
118
+ if isinstance(annotations[0], torch.Tensor):
119
+ annotations = np.array(annotations.cpu())
120
+ for i, mask in enumerate(annotations):
121
+ mask = cv2.morphologyEx(
122
+ mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
123
+ )
124
+ annotations[i] = cv2.morphologyEx(
125
+ mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
126
+ )
127
+ if args.device == "cpu":
128
+ annotations = np.array(annotations)
129
+ fast_show_mask(
130
+ annotations,
131
+ plt.gca(),
132
+ random_color=mask_random_color,
133
+ bbox=bbox,
134
+ points=points,
135
+ point_label=args.point_label,
136
+ retinamask=args.retina,
137
+ target_height=original_h,
138
+ target_width=original_w,
139
+ )
140
+ else:
141
+ if isinstance(annotations[0], np.ndarray):
142
+ annotations = torch.from_numpy(annotations)
143
+ fast_show_mask_gpu(
144
+ annotations,
145
+ plt.gca(),
146
+ random_color=args.randomcolor,
147
+ bbox=bbox,
148
+ points=points,
149
+ point_label=args.point_label,
150
+ retinamask=args.retina,
151
+ target_height=original_h,
152
+ target_width=original_w,
153
+ )
154
+ if isinstance(annotations, torch.Tensor):
155
+ annotations = annotations.cpu().numpy()
156
+ if args.withContours == True:
157
+ contour_all = []
158
+ temp = np.zeros((original_h, original_w, 1))
159
+ for i, mask in enumerate(annotations):
160
+ if type(mask) == dict:
161
+ mask = mask["segmentation"]
162
+ annotation = mask.astype(np.uint8)
163
+ if args.retina == False:
164
+ annotation = cv2.resize(
165
+ annotation,
166
+ (original_w, original_h),
167
+ interpolation=cv2.INTER_NEAREST,
168
+ )
169
+ contours, hierarchy = cv2.findContours(
170
+ annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
171
+ )
172
+ for contour in contours:
173
+ contour_all.append(contour)
174
+ cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
175
+ color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
176
+ contour_mask = temp / 255 * color.reshape(1, 1, -1)
177
+ plt.imshow(contour_mask)
178
+
179
+ save_path = args.output
180
+ if not os.path.exists(save_path):
181
+ os.makedirs(save_path)
182
+ plt.axis("off")
183
+ fig = plt.gcf()
184
+ plt.draw()
185
+
186
+ try:
187
+ buf = fig.canvas.tostring_rgb()
188
+ except AttributeError:
189
+ fig.canvas.draw()
190
+ buf = fig.canvas.tostring_rgb()
191
+
192
+ cols, rows = fig.canvas.get_width_height()
193
+ img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
194
+ cv2.imwrite(
195
+ os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
196
+ )
197
+
198
+
199
+ # CPU post process
200
+ def fast_show_mask(
201
+ annotation,
202
+ ax,
203
+ random_color=False,
204
+ bbox=None,
205
+ points=None,
206
+ point_label=None,
207
+ retinamask=True,
208
+ target_height=960,
209
+ target_width=960,
210
+ ):
211
+ msak_sum = annotation.shape[0]
212
+ height = annotation.shape[1]
213
+ weight = annotation.shape[2]
214
+ # annotation is sorted by area
215
+ areas = np.sum(annotation, axis=(1, 2))
216
+ sorted_indices = np.argsort(areas)
217
+ annotation = annotation[sorted_indices]
218
+
219
+ index = (annotation != 0).argmax(axis=0)
220
+ if random_color == True:
221
+ color = np.random.random((msak_sum, 1, 1, 3))
222
+ else:
223
+ color = np.ones((msak_sum, 1, 1, 3)) * np.array(
224
+ [30 / 255, 144 / 255, 255 / 255]
225
+ )
226
+ transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
227
+ visual = np.concatenate([color, transparency], axis=-1)
228
+ mask_image = np.expand_dims(annotation, -1) * visual
229
+
230
+ show = np.zeros((height, weight, 4))
231
+ h_indices, w_indices = np.meshgrid(
232
+ np.arange(height), np.arange(weight), indexing="ij"
233
+ )
234
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
235
+ # make updates
236
+ show[h_indices, w_indices, :] = mask_image[indices]
237
+ if bbox is not None:
238
+ x1, y1, x2, y2 = bbox
239
+ ax.add_patch(
240
+ plt.Rectangle(
241
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
242
+ )
243
+ )
244
+ # draw point
245
+ if points is not None:
246
+ plt.scatter(
247
+ [point[0] for i, point in enumerate(points) if point_label[i] == 1],
248
+ [point[1] for i, point in enumerate(points) if point_label[i] == 1],
249
+ s=20,
250
+ c="y",
251
+ )
252
+ plt.scatter(
253
+ [point[0] for i, point in enumerate(points) if point_label[i] == 0],
254
+ [point[1] for i, point in enumerate(points) if point_label[i] == 0],
255
+ s=20,
256
+ c="m",
257
+ )
258
+
259
+ if retinamask == False:
260
+ show = cv2.resize(
261
+ show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
262
+ )
263
+ ax.imshow(show)
264
+
265
+
266
+ def fast_show_mask_gpu(
267
+ annotation,
268
+ ax,
269
+ random_color=False,
270
+ bbox=None,
271
+ points=None,
272
+ point_label=None,
273
+ retinamask=True,
274
+ target_height=960,
275
+ target_width=960,
276
+ ):
277
+ msak_sum = annotation.shape[0]
278
+ height = annotation.shape[1]
279
+ weight = annotation.shape[2]
280
+ areas = torch.sum(annotation, dim=(1, 2))
281
+ sorted_indices = torch.argsort(areas, descending=False)
282
+ annotation = annotation[sorted_indices]
283
+ # find the first non-zero subscript for each position
284
+ index = (annotation != 0).to(torch.long).argmax(dim=0)
285
+ if random_color == True:
286
+ color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
287
+ else:
288
+ color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
289
+ [30 / 255, 144 / 255, 255 / 255]
290
+ ).to(annotation.device)
291
+ transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
292
+ visual = torch.cat([color, transparency], dim=-1)
293
+ mask_image = torch.unsqueeze(annotation, -1) * visual
294
+ # index
295
+ show = torch.zeros((height, weight, 4)).to(annotation.device)
296
+ h_indices, w_indices = torch.meshgrid(
297
+ torch.arange(height), torch.arange(weight), indexing="ij"
298
+ )
299
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
300
+ # make updates based on indices
301
+ show[h_indices, w_indices, :] = mask_image[indices]
302
+ show_cpu = show.cpu().numpy()
303
+ if bbox is not None:
304
+ x1, y1, x2, y2 = bbox
305
+ ax.add_patch(
306
+ plt.Rectangle(
307
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
308
+ )
309
+ )
310
+ # draw point
311
+ if points is not None:
312
+ plt.scatter(
313
+ [point[0] for i, point in enumerate(points) if point_label[i] == 1],
314
+ [point[1] for i, point in enumerate(points) if point_label[i] == 1],
315
+ s=20,
316
+ c="y",
317
+ )
318
+ plt.scatter(
319
+ [point[0] for i, point in enumerate(points) if point_label[i] == 0],
320
+ [point[1] for i, point in enumerate(points) if point_label[i] == 0],
321
+ s=20,
322
+ c="m",
323
+ )
324
+ if retinamask == False:
325
+ show_cpu = cv2.resize(
326
+ show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
327
+ )
328
+ ax.imshow(show_cpu)
329
+
330
+
331
+ def crop_image(annotations, image_like):
332
+ if isinstance(image_like, str):
333
+ image = Image.open(image_like)
334
+ else:
335
+ image = image_like
336
+ ori_w, ori_h = image.size
337
+ mask_h, mask_w = annotations[0]["segmentation"].shape
338
+ if ori_w != mask_w or ori_h != mask_h:
339
+ image = image.resize((mask_w, mask_h))
340
+ cropped_boxes = []
341
+ cropped_images = []
342
+ not_crop = []
343
+ filter_id = []
344
+ # annotations, _ = filter_masks(annotations)
345
+ # filter_id = list(_)
346
+ for _, mask in enumerate(annotations):
347
+ if np.sum(mask["segmentation"]) <= 100:
348
+ filter_id.append(_)
349
+ continue
350
+ bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
351
+ cropped_boxes.append(segment_image(image, bbox))
352
+ # cropped_boxes.append(segment_image(image,mask["segmentation"]))
353
+ cropped_images.append(bbox)
354
+
355
+ return cropped_boxes, cropped_images, not_crop, filter_id, annotations
356
+
357
+
358
+ def box_prompt(masks, bbox, target_height, target_width):
359
+ h = masks[0]["segmentation"].shape[1]
360
+ w = masks[0]["segmentation"].shape[2]
361
+ masks = masks[0]["segmentation"]
362
+ bbox = bbox.reshape([4])
363
+ if h != target_height or w != target_width:
364
+ bbox = [
365
+ int(bbox[0] * w / target_width),
366
+ int(bbox[1] * h / target_height),
367
+ int(bbox[2] * w / target_width),
368
+ int(bbox[3] * h / target_height),
369
+ ]
370
+ bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
371
+ bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
372
+ bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
373
+ bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
374
+
375
+ # IoUs = torch.zeros(len(masks), dtype=torch.float32)
376
+ bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
377
+
378
+ masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
379
+ orig_masks_area = torch.sum(masks, dim=(1, 2))
380
+
381
+ union = bbox_area + orig_masks_area - masks_area
382
+ IoUs = masks_area / union
383
+ max_iou_index = torch.argmax(IoUs)
384
+
385
+ return masks[max_iou_index].cpu().numpy(), max_iou_index
386
+
387
+
388
+ def point_prompt(masks, points, point_label, target_height, target_width): # numpy
389
+ h = masks[0]["segmentation"].shape[0]
390
+ w = masks[0]["segmentation"].shape[1]
391
+ if h != target_height or w != target_width:
392
+ points = [
393
+ [int(point[0] * w / target_width), int(point[1] * h / target_height)]
394
+ for point in points
395
+ ]
396
+ onemask = np.zeros((h, w))
397
+ for i, annotation in enumerate(masks):
398
+ if type(annotation) == dict:
399
+ mask = annotation["segmentation"]
400
+ else:
401
+ mask = annotation
402
+ for i, point in enumerate(points):
403
+ if point[1] < mask.shape[0] and point[0] < mask.shape[1]:
404
+ if mask[point[1], point[0]] == 1 and point_label[i] == 1:
405
+ onemask += mask
406
+ if mask[point[1], point[0]] == 1 and point_label[i] == 0:
407
+ onemask -= mask
408
+ onemask = onemask >= 1
409
+ return onemask, 0