File size: 2,590 Bytes
284eba0
5ff014d
284eba0
3e7dbba
42ff0a6
284eba0
0de8536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284eba0
0de8536
 
574276f
1d000d6
0de8536
5ff014d
284eba0
5ff014d
284eba0
0de8536
130f1d3
15f8afb
7c5859b
e85acd3
 
 
 
 
20f4d1b
 
 
 
 
 
 
 
 
 
 
284eba0
7c5859b
130f1d3
 
 
 
e980426
7c5859b
 
130f1d3
 
 
 
 
 
 
0de8536
e980426
05b1421
130f1d3
 
0de8536
cbb0a6b
3e7dbba
f160696
284eba0
4191bbd
 
 
 
5eab787
f160696
834fb23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import tensorflow as tf
import gdown
from PIL import Image
import pillow_avif

input_shape = (32, 32, 3)
resized_shape = (224, 224, 3)
num_classes = 10
labels = {
    0: "plane",
    1: "car",
    2: "bird",
    3: "cat",
    4: "deer",
    5: "dog",
    6: "frog",
    7: "horse",
    8: "ship",
    9: "truck",
}

# Download the model file
def download_model():
    url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL"
    output = "modelV2Lmixed.keras"
    gdown.download(url, output, quiet=False)
    return output

model_file = download_model()

# Load the model
model = tf.keras.models.load_model(model_file)

# Perform image classification for single class output
# def predict_class(image):
#     img = tf.cast(image, tf.float32)
#     img = tf.image.resize(img, [input_shape[0], input_shape[1]])
#     img = tf.expand_dims(img, axis=0)
#     prediction = model.predict(img)
#     class_index = tf.argmax(prediction[0]).numpy()
#     predicted_class = labels[class_index]
#     return predicted_class

# Perform image classification for multy class output
def predict_class(image):
    img = tf.cast(image, tf.float32)
    img = tf.image.resize(img, [input_shape[0], input_shape[1]])
    img = tf.expand_dims(img, axis=0)
    prediction = model.predict(img)
    return prediction[0]

# UI Design for single class output
# def classify_image(image):
#     predicted_class = predict_class(image)
#     output = f"<h2>Predicted Class: <span style='text-transform:uppercase';>{predicted_class}</span></h2>"
#     return output


# UI Design for multy class output
def classify_image(image):
    results = predict_class(image)
    print("results is ...", results)
    output = {labels.get(i): float(results[i]) for i in range(len(results))}
    print("output is ...", output)
    result = output if max(output.values()) >=0.98 else {"NO_CIFAR10_CLASS": 1}
    return result


inputs = gr.components.Image(type="pil", label="Upload an image")
# outputs = gr.outputs.HTML() #uncomment for single class output 
outputs = gr.components.Label(num_top_classes=4)

title = "<h1 style='text-align: center;'>Image Classifier</h1>"
description = "Upload an image and get the predicted class."
# css_code='body{background-image:url("file=wave.mp4");}'

gr.Interface(fn=classify_image, 
             inputs=inputs, 
             outputs=outputs, 
             title=title, 
             examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_house.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]],
             # css=css_code,
             description=description).launch()