yuragoithf
commited on
Commit
·
2f9a8a8
1
Parent(s):
c88379a
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,67 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
#
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
import io
|
39 |
-
import requests
|
40 |
-
from PIL import Image
|
41 |
-
import torch
|
42 |
-
import numpy
|
43 |
|
44 |
-
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
45 |
-
from transformers.models.detr.feature_extraction_detr import rgb_to_id
|
46 |
|
47 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
48 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
49 |
|
50 |
-
feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
|
51 |
-
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
|
52 |
|
53 |
-
# prepare image for the model
|
54 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
55 |
|
56 |
-
# forward pass
|
57 |
-
outputs = model(**inputs)
|
58 |
|
59 |
-
# use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
|
60 |
-
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
|
61 |
-
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
|
62 |
|
63 |
-
# the segmentation is stored in a special-format png
|
64 |
-
panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
|
65 |
-
panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
|
66 |
-
# retrieve the ids corresponding to each mask
|
67 |
-
panoptic_seg_id = rgb_to_id(panoptic_seg)
|
|
|
1 |
+
import requests
|
2 |
+
import os, io
|
3 |
+
import gradio as gr
|
4 |
+
# from PIL import Image
|
5 |
|
6 |
+
# API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic"
|
7 |
|
8 |
+
SECRET_TOKEN = os.getenv("SECRET_TOKEN")
|
9 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-dc5-panoptic"
|
10 |
+
headers = {"Authorization": f'Bearer {SECRET_TOKEN}'}
|
11 |
|
12 |
|
13 |
|
14 |
+
def image_classifier(inp):
|
15 |
+
return {'cat': 0.3, 'dog': 0.7}
|
16 |
|
17 |
+
def query(filename):
|
18 |
+
with open(filename, "rb") as f:
|
19 |
+
data = f.read()
|
20 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
21 |
+
return response.json()
|
22 |
|
23 |
+
def rb(img):
|
24 |
+
# initialiaze io to_bytes converter
|
25 |
+
img_byte_arr = io.BytesIO()
|
26 |
+
# define quality of saved array
|
27 |
+
img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100)
|
28 |
+
# converts image array to bytesarray
|
29 |
+
img_byte_arr = img_byte_arr.getvalue()
|
30 |
+
response = requests.post(API_URL, headers=headers, data=img_byte_arr)
|
31 |
+
return response.json()
|
32 |
|
33 |
|
34 |
+
inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
35 |
+
demo = gr.Interface(fn=rb, inputs=inputs, outputs="json")
|
36 |
+
demo.launch()
|
37 |
|
38 |
+
# import io
|
39 |
+
# import requests
|
40 |
+
# from PIL import Image
|
41 |
+
# import torch
|
42 |
+
# import numpy
|
43 |
|
44 |
+
# from transformers import DetrFeatureExtractor, DetrForSegmentation
|
45 |
+
# from transformers.models.detr.feature_extraction_detr import rgb_to_id
|
46 |
|
47 |
+
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
48 |
+
# image = Image.open(requests.get(url, stream=True).raw)
|
49 |
|
50 |
+
# feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
|
51 |
+
# model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
|
52 |
|
53 |
+
# # prepare image for the model
|
54 |
+
# inputs = feature_extractor(images=image, return_tensors="pt")
|
55 |
|
56 |
+
# # forward pass
|
57 |
+
# outputs = model(**inputs)
|
58 |
|
59 |
+
# # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
|
60 |
+
# processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
|
61 |
+
# result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
|
62 |
|
63 |
+
# # the segmentation is stored in a special-format png
|
64 |
+
# panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
|
65 |
+
# panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
|
66 |
+
# # retrieve the ids corresponding to each mask
|
67 |
+
# panoptic_seg_id = rgb_to_id(panoptic_seg)
|