yuragoithf commited on
Commit
2f9a8a8
·
1 Parent(s): c88379a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -50
app.py CHANGED
@@ -1,67 +1,67 @@
1
- # import requests
2
- # import os, io
3
- # import gradio as gr
4
- # # from PIL import Image
5
 
6
- # # API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic"
7
 
8
- # SECRET_TOKEN = os.getenv("SECRET_TOKEN")
9
- # API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-dc5-panoptic"
10
- # headers = {"Authorization": f'Bearer {SECRET_TOKEN}'}
11
 
12
 
13
 
14
- # def image_classifier(inp):
15
- # return {'cat': 0.3, 'dog': 0.7}
16
 
17
- # def query(filename):
18
- # with open(filename, "rb") as f:
19
- # data = f.read()
20
- # response = requests.post(API_URL, headers=headers, data=data)
21
- # return response.json()
22
 
23
- # def rb(img):
24
- # # initialiaze io to_bytes converter
25
- # img_byte_arr = io.BytesIO()
26
- # # define quality of saved array
27
- # img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100)
28
- # # converts image array to bytesarray
29
- # img_byte_arr = img_byte_arr.getvalue()
30
- # response = requests.post(API_URL, headers=headers, data=img_byte_arr)
31
- # return response.json()
32
 
33
 
34
- # inputs = gr.inputs.Image(type="pil", label="Upload an image")
35
- # demo = gr.Interface(fn=rb, inputs=inputs, outputs="json")
36
- # demo.launch()
37
 
38
- import io
39
- import requests
40
- from PIL import Image
41
- import torch
42
- import numpy
43
 
44
- from transformers import DetrFeatureExtractor, DetrForSegmentation
45
- from transformers.models.detr.feature_extraction_detr import rgb_to_id
46
 
47
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
48
- image = Image.open(requests.get(url, stream=True).raw)
49
 
50
- feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
51
- model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
52
 
53
- # prepare image for the model
54
- inputs = feature_extractor(images=image, return_tensors="pt")
55
 
56
- # forward pass
57
- outputs = model(**inputs)
58
 
59
- # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
60
- processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
61
- result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
62
 
63
- # the segmentation is stored in a special-format png
64
- panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
65
- panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
66
- # retrieve the ids corresponding to each mask
67
- panoptic_seg_id = rgb_to_id(panoptic_seg)
 
1
+ import requests
2
+ import os, io
3
+ import gradio as gr
4
+ # from PIL import Image
5
 
6
+ # API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic"
7
 
8
+ SECRET_TOKEN = os.getenv("SECRET_TOKEN")
9
+ API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-dc5-panoptic"
10
+ headers = {"Authorization": f'Bearer {SECRET_TOKEN}'}
11
 
12
 
13
 
14
+ def image_classifier(inp):
15
+ return {'cat': 0.3, 'dog': 0.7}
16
 
17
+ def query(filename):
18
+ with open(filename, "rb") as f:
19
+ data = f.read()
20
+ response = requests.post(API_URL, headers=headers, data=data)
21
+ return response.json()
22
 
23
+ def rb(img):
24
+ # initialiaze io to_bytes converter
25
+ img_byte_arr = io.BytesIO()
26
+ # define quality of saved array
27
+ img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100)
28
+ # converts image array to bytesarray
29
+ img_byte_arr = img_byte_arr.getvalue()
30
+ response = requests.post(API_URL, headers=headers, data=img_byte_arr)
31
+ return response.json()
32
 
33
 
34
+ inputs = gr.inputs.Image(type="pil", label="Upload an image")
35
+ demo = gr.Interface(fn=rb, inputs=inputs, outputs="json")
36
+ demo.launch()
37
 
38
+ # import io
39
+ # import requests
40
+ # from PIL import Image
41
+ # import torch
42
+ # import numpy
43
 
44
+ # from transformers import DetrFeatureExtractor, DetrForSegmentation
45
+ # from transformers.models.detr.feature_extraction_detr import rgb_to_id
46
 
47
+ # url = "http://images.cocodataset.org/val2017/000000039769.jpg"
48
+ # image = Image.open(requests.get(url, stream=True).raw)
49
 
50
+ # feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
51
+ # model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
52
 
53
+ # # prepare image for the model
54
+ # inputs = feature_extractor(images=image, return_tensors="pt")
55
 
56
+ # # forward pass
57
+ # outputs = model(**inputs)
58
 
59
+ # # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
60
+ # processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
61
+ # result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
62
 
63
+ # # the segmentation is stored in a special-format png
64
+ # panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
65
+ # panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
66
+ # # retrieve the ids corresponding to each mask
67
+ # panoptic_seg_id = rgb_to_id(panoptic_seg)