yuragoithf
commited on
Commit
·
c899fa2
1
Parent(s):
ff2d498
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,9 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
# Perform image classification for single class output
|
11 |
-
# def predict_class(image):
|
12 |
-
# img = tf.cast(image, tf.float32)
|
13 |
-
# img = tf.image.resize(img, [input_shape[0], input_shape[1]])
|
14 |
-
# img = tf.expand_dims(img, axis=0)
|
15 |
-
# prediction = model.predict(img)
|
16 |
-
# class_index = tf.argmax(prediction[0]).numpy()
|
17 |
-
# predicted_class = labels[class_index]
|
18 |
-
# return predicted_class
|
19 |
-
|
20 |
-
# Perform image classification for multy class output
|
21 |
-
def predict_class(image):
|
22 |
-
img = tf.cast(image, tf.float32)
|
23 |
-
prediction = model.predict(img)
|
24 |
-
return prediction
|
25 |
-
|
26 |
-
# UI Design for single class output
|
27 |
-
# def classify_image(image):
|
28 |
-
# predicted_class = predict_class(image)
|
29 |
-
# output = f"<h2>Predicted Class: <span style='text-transform:uppercase';>{predicted_class}</span></h2>"
|
30 |
-
# return output
|
31 |
-
|
32 |
-
|
33 |
-
# UI Design for multy class output
|
34 |
-
def classify_image(image):
|
35 |
-
results = predict_class(image)
|
36 |
-
|
37 |
-
return results
|
38 |
-
|
39 |
-
|
40 |
-
inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
41 |
-
# outputs = gr.outputs.HTML() #uncomment for single class output
|
42 |
-
outputs = gr.outputs.Label(num_top_classes=4)
|
43 |
-
|
44 |
-
title = "<h1 style='text-align: center;'>Image Classifier</h1>"
|
45 |
-
description = "Upload an image and get the predicted class."
|
46 |
-
# css_code='body{background-image:url("file=wave.mp4");}'
|
47 |
-
|
48 |
-
gr.Interface(fn=classify_image,
|
49 |
-
inputs=inputs,
|
50 |
-
outputs=outputs,
|
51 |
-
title=title,
|
52 |
-
examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_bird.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]],
|
53 |
-
# css=css_code,
|
54 |
-
description=description).launch()
|
|
|
1 |
+
import json
|
2 |
+
import requests
|
3 |
+
API_URL = "https://api-inference.huggingface.co/models/gpt2"
|
4 |
+
headers = {"Authorization": f"Bearer {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}"}
|
5 |
+
def query(payload):
|
6 |
+
data = json.dumps(payload)
|
7 |
+
response = requests.request("POST", API_URL, headers=headers, data=data)
|
8 |
+
return json.loads(response.content.decode("utf-8"))
|
9 |
+
data = query("Can you please let us know more details about your ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|