yuragoithf
commited on
Commit
·
3b78676
1
Parent(s):
a148f68
Update app.py
Browse files
app.py
CHANGED
@@ -43,8 +43,14 @@ def dice_coef(y_true, y_pred, smooth=1):
|
|
43 |
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
|
44 |
return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Load the model
|
47 |
-
seg_model = keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
|
48 |
|
49 |
# inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
50 |
# image_output = gr.outputs.Image(type="pil", label="Output Image")
|
|
|
43 |
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
|
44 |
return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
|
45 |
|
46 |
+
def focal_loss_fixed(y_true, y_pred, gamma=2.0, alpha=0.25):
|
47 |
+
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
|
48 |
+
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
|
49 |
+
focal_loss_fixed = -K.mean(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1+K.epsilon())) - K.mean((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0 + K.epsilon()))
|
50 |
+
return focal_loss_fixed
|
51 |
+
|
52 |
# Load the model
|
53 |
+
seg_model = keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'focal_loss_fixed': focal_loss_fixed}, 'dice_coef': dice_coef})
|
54 |
|
55 |
# inputs = gr.inputs.Image(type="pil", label="Upload an image")
|
56 |
# image_output = gr.outputs.Image(type="pil", label="Output Image")
|