yuragoithf commited on
Commit
7fe3aed
·
verified ·
1 Parent(s): 73747ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -26,8 +26,8 @@ model_file = "./seg_unet_model.h5"
26
  #Custom objects for model
27
 
28
  def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
29
- targets = tf.dtypes.cast(K.flatten(y_true), tf.float32)
30
- inputs = tf.dtypes.cast(K.flatten(y_pred), tf.float32)
31
  intersection = K.sum(targets * inputs)
32
  dice = (2. * intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
33
  inputs = K.clip(inputs, eps, 1.0 - eps)
@@ -37,15 +37,15 @@ def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
37
  return combo
38
 
39
  def dice_coef(y_true, y_pred, smooth=1):
40
- y_pred = tf.dtypes.cast(y_pred, tf.int32)
41
- y_true = tf.dtypes.cast(y_true, tf.int32)
42
  intersection = K.sum(y_true * y_pred, axis=[1,2,3])
43
  union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
44
  return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
45
 
46
  def focal_loss_fixed(y_true, y_pred, gamma=2.0, alpha=0.25):
47
- pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
48
- pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
49
  focal_loss_fixed = -K.mean(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1+K.epsilon())) - K.mean((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0 + K.epsilon()))
50
  return focal_loss_fixed
51
 
 
26
  #Custom objects for model
27
 
28
  def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
29
+ targets = keras.ops.cast(K.flatten(y_true), dtype="float32")
30
+ inputs = keras.ops.cast(K.flatten(y_pred), dtype="float32")
31
  intersection = K.sum(targets * inputs)
32
  dice = (2. * intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
33
  inputs = K.clip(inputs, eps, 1.0 - eps)
 
37
  return combo
38
 
39
  def dice_coef(y_true, y_pred, smooth=1):
40
+ y_pred = keras.ops.cast(y_pred, dtype="int32")
41
+ y_true = keras.ops.cast(y_true, tdtype="int32")
42
  intersection = K.sum(y_true * y_pred, axis=[1,2,3])
43
  union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
44
  return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
45
 
46
  def focal_loss_fixed(y_true, y_pred, gamma=2.0, alpha=0.25):
47
+ pt_1 = keras.ops.where(keras.ops.equal(y_true, 1), y_pred, keras.ops.ones_like(y_pred))
48
+ pt_0 = keras.ops.where(keras.ops.equal(y_true, 0), y_pred, keras.ops.ones_like(y_pred))
49
  focal_loss_fixed = -K.mean(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1+K.epsilon())) - K.mean((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0 + K.epsilon()))
50
  return focal_loss_fixed
51