yuvaranianandhan24 commited on
Commit
d34584c
Β·
verified Β·
1 Parent(s): fa8edda

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ import requests
4
+ import json
5
+
6
+ def list_to_dict(data):
7
+ results = {}
8
+
9
+ for i in range(len(data)):
10
+ # Access the i-th dictionary in the list using an integer index
11
+ d = data[i]
12
+ # Assign the value of the 'label' key to the 'score' value in the results dictionary
13
+ results[d['label']] = d['score']
14
+
15
+ # The results dictionary will now contain the label-score pairs from the data list
16
+ return results
17
+
18
+ API_URL = "https://api-inference.huggingface.co/models/nateraw/food"
19
+ headers = {"Authorization": "Bearer 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"}
20
+
21
+ def query(filename):
22
+ with open(filename, "rb") as f:
23
+ data = f.read()
24
+ response = requests.request("POST", API_URL, headers=headers, data=data)
25
+ output = json.loads(response.content.decode("utf-8"))
26
+ return list_to_dict(output),json.dumps(output, indent=2, sort_keys=True)
27
+
28
+ def get_nutrition_info(food_name):
29
+ #Make request to Nutritionix API
30
+ response = requests.get(
31
+ "https://trackapi.nutritionix.com/v2/search/instant",
32
+ params={"query": food_name},
33
+ headers={
34
+ "x-app-id": "63a710ef",
35
+ "x-app-key": "3ddc7e3feda88e1cf6dd355fb26cb261"
36
+ }
37
+ )
38
+ #Parse response and return relevant information
39
+ data = response.json()
40
+ response = data["branded"][0]["photo"]["thumb"]
41
+ val = {
42
+ "food_name": data["branded"][0]["food_name"],
43
+ "calories": data["branded"][0]["nf_calories"],
44
+ "serving_size": data["branded"][0]["serving_qty"],
45
+ "serving_unit": data["branded"][0]["serving_unit"],
46
+ #"images": data["branded"][0]["photo"]
47
+ }
48
+ # Open the image using PIL
49
+ output = json.dumps(val, indent=2, sort_keys=True)
50
+ return output,response
51
+
52
+ def volume_estimations(ali):
53
+ return None
54
+
55
+ with gr.Blocks() as demo:
56
+ gr.Markdown("Food-Classification-Calorie-Estimation and Volume-Estimation")
57
+ with gr.Tab("Food Classification"):
58
+ text_input = gr.Image(type="filepath",interactive=True,label="Upload the food Image and Zoom in to the item you want to get the calorie for")
59
+ text_output = [gr.Label(num_top_classes=6),
60
+ gr.Textbox()
61
+ ]
62
+ text_button = gr.Button("Food Classification")
63
+ with gr.Tab("Food Calorie Estimation"):
64
+ image_input = gr.Textbox(label="Please enter the name of the Food you want to get calorie")
65
+ image_output = [gr.Textbox(),
66
+ gr.Image(type="filepath")
67
+ ]
68
+ image_button = gr.Button("Estimate Calories!")
69
+ with gr.Tab("Volume Estimation"):
70
+ _image_input = gr.Textbox(label="Please Download the Photogrammetry File trained on APPLE AR KIT and follow the instruction mention below to generate the 3D Vortex of the object")
71
+ _image_output = gr.Image()
72
+ gr.Markdown("-----------------------------------------------------------------------------")
73
+ gr.Markdown("Directory where HelloPhotogrammetry app Saved. Example:/Users/ali/Desktop/HelloPhotogrammetry")
74
+ gr.Markdown("Directory where all the images are saved. Example:: ~/Desktop/Burger_Data_3")
75
+ gr.Markdown("Directory where the usdz or obj file has to be saved. Example: ~/Desktop/Burger_Data_3/Burger.usdz")
76
+ gr.Markdown("File Quality that you want your 3D model to be. Example: --detail medium ")
77
+ gr.Markdown("-----------------------------------------------------------------------------")
78
+ gr.Markdown("/Users/ali/Desktop/HelloPhotogrammetry ~/Desktop/Burger_Data_3 ~/Desktop/Burger_Data_3/Burger.obj --detail medium")
79
+ gr.Markdown("You can download the photogrammetry demo and files using this Google drive link")
80
+ gr.Markdown("-----------------------------------------------------------------------------")
81
+ gr.Markdown("https://drive.google.com/drive/folders/1QrL0Vhvw5GvIQ8fbHfb9EOsnOlPMmXLG?usp=share_link")
82
+ gr.Markdown("-----------------------------------------------------------------------------")
83
+
84
+
85
+
86
+ _image_button = gr.Button("Volume Calculation")
87
+ with gr.Tab("Future Works"):
88
+ gr.Markdown("Future work on Food Classification")
89
+ gr.Markdown(
90
+ "Currently the Model is trained on food-101 Dataset, which has 100 classes, In the future iteration of the project we would like to train the model on UNIMIB Dataset with 256 Food Classes")
91
+ gr.Markdown("Future work on Volume Estimation")
92
+ gr.Markdown(
93
+ "The volume model has been trained on Apple AR Toolkit and thus can be executred only on Apple devices ie a iOS platform, In futur we would like to train the volume model such that it is Platform independent")
94
+ gr.Markdown("Future work on Calorie Estimation")
95
+ gr.Markdown(
96
+ "The Calorie Estimation currently relies on Nutritionix API , In Future Iteration we would like to build our own Custom Database of Major Food Product across New York Restaurent")
97
+ gr.Markdown("https://github.com/Ali-Maq/Food-Classification-Volume-Estimation-and-Calorie-Estimation/blob/main/README.md")
98
+
99
+ text_button.click(query, inputs=text_input, outputs=text_output,scroll_to_output=True,show_progress=True)
100
+ image_button.click(get_nutrition_info, inputs=image_input, outputs=image_output,scroll_to_output=True,show_progress=True)
101
+ #_image_button.click(get_nutrition_info, inputs=_image_input, outputs=_image_output)
102
+ with gr.Accordion("Open for More!"):
103
+ gr.Markdown("🍎 Designed and built by Ali Under the Guidance of Professor Dennis Shasha")
104
+ gr.Markdown("Contact me at [email protected] 😊")
105
+
106
+ demo.launch()