File size: 5,202 Bytes
ee99dd0
068d689
 
 
 
 
 
 
268f3a0
 
 
 
068d689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268f3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
068d689
 
 
268f3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a7a178
068d689
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import streamlit as st
import requests
from transformers import pipeline
import openai
from langchain import LLMChain, PromptTemplate
from langchain import HuggingFaceHub

from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch


# Suppressing all warnings
import warnings
warnings.filterwarnings("ignore")

api_token = os.getenv('H_TOKEN')

# Image-to-text
def img2txt(url):
    print("Initializing captioning model...")
    captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
    
    print("Generating text from the image...")
    text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
    
    print(text)
    return text

# Text-to-story

model = "tiiuae/falcon-7b-instruct"
llm = HuggingFaceHub(
    huggingfacehub_api_token = api_token,
    repo_id = model,
    verbose = False,
    model_kwargs = {"temperature":0.2, "max_new_tokens": 4000})

def generate_story(scenario, llm):
  template= """You are a story teller.
               You get a scenario as an input text, and generates a short story out of it.
               Context: {scenario}
               Story:
               """
  prompt = PromptTemplate(template=template, input_variables=["scenario"])
  #Let's create our LLM chain now
  chain = LLMChain(prompt=prompt, llm=llm)
  story = chain.predict(scenario=scenario)
  start_index = story.find("Story:") + len("Story:")

  # Extract the text after "Story:"
  story = story[start_index:].strip()
  return story


# Text-to-speech
def txt2speech(text):
    print("Initializing text-to-speech conversion...")
    API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
    headers = {"Authorization": f"Bearer {api_token }"}
    payloads = {'inputs': text}

    response = requests.post(API_URL, headers=headers, json=payloads)
    
    with open('audio_story.mp3', 'wb') as file:
        file.write(response.content)


# text-to- image
def txt2img(text, style="realistic"):
    model_id = "stabilityai/stable-diffusion-2"

    # Use the Euler scheduler here instead
    scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
    pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
    pipe = pipe.to("cuda")
    image = pipe(prompt = text, guidance_scale = 7.5).images[0]
    return image
    
        
st.sidebar.title("Choose the task")
        
# Streamlit web app main function
def main():
    with st.sidebar.expander("Audio Story"):

        st.set_page_config(page_title="🎨 Image-to-Audio Story 🎧", page_icon="πŸ–ΌοΈ")
        st.title("Turn the Image into Audio Story")
    
        # Allows users to upload an image file
        uploaded_file = st.file_uploader("# πŸ“· Upload an image...", type=["jpg", "jpeg", "png"])
    
        # Parameters for LLM model (in the sidebar)
        #st.sidebar.markdown("# LLM Inference Configuration Parameters")
        #top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5)
        #top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8)
        #temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5)
    
        if uploaded_file is not None:
            # Reads and saves uploaded image file
            bytes_data = uploaded_file.read()
            with open("uploaded_image.jpg", "wb") as file:
                file.write(bytes_data)
    
            st.image(uploaded_file, caption='πŸ–ΌοΈ Uploaded Image', use_column_width=True)
    
            # Initiates AI processing and story generation
            with st.spinner("## πŸ€– AI is at Work! "):
                scenario = img2txt("uploaded_image.jpg")  # Extracts text from the image
                story = generate_story(scenario, llm)  # Generates a story based on the image text, LLM params
                txt2speech(story)  # Converts the story to audio
    
                st.markdown("---")
                st.markdown("## πŸ“œ Image Caption")
                st.write(scenario)
    
                st.markdown("---")
                st.markdown("## πŸ“– Story")
                st.write(story)
    
                st.markdown("---")
                st.markdown("## 🎧 Audio Story")
                st.audio("audio_story.mp3")

    with st.sidebar.expander("Image Generator"):
        st.title("Stable Diffusion Image Generation")
        st.write("This app lets you generate images using Stable Diffusion with the Euler scheduler.")
        
        prompt = st.text_input("Enter your prompt:")
        image_style = st.selectbox("Style Selection", ["realistic", "cartoon", "watercolor"])
        
        if st.button("Generate Image"):
          if prompt:
            with st.spinner("Generating image..."):
              image = txt2img(prompt= prompt, style = image_style)
            st.image(image)
          else:
            st.error("Please enter a prompt.")


    st.title("Welcome to your Creative Canvas!")
    st.write("Use the tools in the sidebar to create audio stories and unique images.")


        

if __name__ == '__main__':
    main()