yuvscherbatov
commited on
Commit
·
8e253e0
1
Parent(s):
665125d
Upload app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ import gradio as gr
|
|
11 |
import numpy as np
|
12 |
import torch
|
13 |
|
14 |
-
from transformers import pipeline, VitsModel, VitsTokenizer
|
15 |
|
16 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
17 |
|
@@ -19,7 +19,11 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
19 |
asr_pipe = pipeline("automatic-speech-recognition", model="asapp/sew-d-tiny-100k-ft-ls100h", device=device)
|
20 |
|
21 |
#eng text to rus text translation
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
#rus text to rus speech transformation
|
25 |
vits_model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
@@ -30,8 +34,12 @@ def transform_audio_to_speech_en(audio):
|
|
30 |
return outputs["text"]
|
31 |
|
32 |
def translator(text):
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def synthesise(translated_text):
|
37 |
translated_text = translator(translated_text)
|
|
|
11 |
import numpy as np
|
12 |
import torch
|
13 |
|
14 |
+
from transformers import pipeline, VitsModel, VitsTokenizer, FSMTForConditionalGeneration, FSMTTokenizer
|
15 |
|
16 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
17 |
|
|
|
19 |
asr_pipe = pipeline("automatic-speech-recognition", model="asapp/sew-d-tiny-100k-ft-ls100h", device=device)
|
20 |
|
21 |
#eng text to rus text translation
|
22 |
+
mname = "facebook/wmt19-en-ru"
|
23 |
+
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
24 |
+
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
25 |
+
|
26 |
+
#translation_pipe = pipeline("translation", model="facebook/wmt19-en-ru")
|
27 |
|
28 |
#rus text to rus speech transformation
|
29 |
vits_model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
|
|
34 |
return outputs["text"]
|
35 |
|
36 |
def translator(text):
|
37 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
38 |
+
outputs = model.generate(input_ids)
|
39 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
return decoded
|
41 |
+
#translated_text = translation_pipe(text)
|
42 |
+
#return translated_text[0]['translation_text']
|
43 |
|
44 |
def synthesise(translated_text):
|
45 |
translated_text = translator(translated_text)
|