File size: 32,754 Bytes
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for python tokenizers.
    For fast tokenizers (provided by HuggingFace's tokenizers library) see tokenization_utils_fast.py
"""

import itertools
import logging
import re
import unicodedata
from typing import Dict, List, Optional, Tuple, Union

from .file_utils import add_end_docstrings
from .tokenization_utils_base import (
    ENCODE_KWARGS_DOCSTRING,
    ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
    AddedToken,
    BatchEncoding,
    EncodedInput,
    EncodedInputPair,
    PaddingStrategy,
    PreTokenizedInput,
    PreTokenizedInputPair,
    PreTrainedTokenizerBase,
    TensorType,
    TextInput,
    TextInputPair,
    TruncationStrategy,
)


logger = logging.getLogger(__name__)


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False


def _is_end_of_word(text):
    """Checks whether the last character in text is one of a punctuation, control or whitespace character."""
    last_char = text[-1]
    return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))


def _is_start_of_word(text):
    """Checks whether the first character in text is one of a punctuation, control or whitespace character."""
    first_char = text[0]
    return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))


class PreTrainedTokenizer(PreTrainedTokenizerBase):
    """ Base class for all slow tokenizers.

    Handle all the shared methods for tokenization and special tokens as well as methods
    downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.

    This class also contain the added tokens in a unified way on top of all tokenizers so we don't
    have to handle the specific vocabulary augmentation methods of the various underlying
    dictionary structures (BPE, sentencepiece...).

    Class attributes (overridden by derived classes):

    - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file
      required by the model, and as associated values, the filename for saving the associated file (string).
    - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys
      being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the
      `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the
      associated pretrained vocabulary file.
    - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained
      models, and as associated values, the maximum length of the sequence inputs of this model, or None if the
      model has no maximum input size.
    - ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the
      pretrained models, and as associated values, a dictionnary of specific arguments to pass to the
      ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the
      ``from_pretrained()`` method.

    Args:
        - ``model_max_length``: (`Optional`) int: the maximum length in number of tokens for the inputs to the transformer model.
            When the tokenizer is loaded with `from_pretrained`, this will be set to the value stored for the associated
            model in ``max_model_input_sizes`` (see above). If no value is provided, will default to VERY_LARGE_INTEGER (`int(1e30)`).
            no associated max_length can be found in ``max_model_input_sizes``.
        - ``padding_side``: (`Optional`) string: the side on which the model should have padding applied.
            Should be selected between ['right', 'left']
        - ``model_input_names``: (`Optional`) List[string]: the list of the forward pass inputs accepted by the
            model ("token_type_ids", "attention_mask"...).
        - ``bos_token``: (`Optional`) string: a beginning of sentence token.
            Will be associated to ``self.bos_token`` and ``self.bos_token_id``
        - ``eos_token``: (`Optional`) string: an end of sentence token.
            Will be associated to ``self.eos_token`` and ``self.eos_token_id``
        - ``unk_token``: (`Optional`) string: an unknown token.
            Will be associated to ``self.unk_token`` and ``self.unk_token_id``
        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence).
            Will be associated to ``self.sep_token`` and ``self.sep_token_id``
        - ``pad_token``: (`Optional`) string: a padding token.
            Will be associated to ``self.pad_token`` and ``self.pad_token_id``
        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence
            leveraging self-attention along the full depth of the model).
            Will be associated to ``self.cls_token`` and ``self.cls_token_id``
        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language
            modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens.
            Adding all special tokens here ensure they won't be split by the tokenization process.
            Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``


    .. automethod:: __call__
    """

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # Added tokens - We store this for both slow and fast tokenizers
        # until the serialization of Fast tokenizers is updated
        self.added_tokens_encoder: Dict[str, int] = {}
        self.added_tokens_decoder: Dict[int, str] = {}
        self.unique_no_split_tokens: List[str] = []

    @property
    def is_fast(self) -> bool:
        return False

    @property
    def vocab_size(self) -> int:
        """ Size of the base vocabulary (without the added tokens) """
        raise NotImplementedError

    def get_vocab(self):
        """ Returns the vocabulary as a dict of {token: index} pairs. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. """
        raise NotImplementedError()

    def get_added_vocab(self) -> Dict[str, int]:
        return self.added_tokens_encoder

    def __len__(self):
        """ Size of the full vocabulary with the added tokens """
        return self.vocab_size + len(self.added_tokens_encoder)

    def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens=False) -> int:
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

        Args:
            new_tokens: string or list of string. Each string is a token to add. Tokens are only added if they are not
                already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).

        Returns:
            Number of tokens added to the vocabulary.

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
        """
        new_tokens = [str(tok) for tok in new_tokens]

        tokens_to_add = []
        for token in new_tokens:
            assert isinstance(token, str)
            if not special_tokens and self.init_kwargs.get("do_lower_case", False):
                token = token.lower()
            if (
                token != self.unk_token
                and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
                and token not in tokens_to_add
            ):
                tokens_to_add.append(token)
                if self.verbose:
                    logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
        added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        # Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert)
        if special_tokens:
            self.unique_no_split_tokens = list(set(self.unique_no_split_tokens).union(set(new_tokens)))
        else:
            # Or on the newly added tokens
            self.unique_no_split_tokens = list(set(self.unique_no_split_tokens).union(set(tokens_to_add)))

        return len(tokens_to_add)

    def num_special_tokens_to_add(self, pair=False):
        """
        Returns the number of added tokens when encoding a sequence with special tokens.

        Note:
            This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this
            inside your training loop.

        Args:
            pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the
                number of added tokens in the case of a single sequence if set to False.

        Returns:
            Number of tokens added to sequences
        """
        token_ids_0 = []
        token_ids_1 = []
        return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))

    def tokenize(self, text: TextInput, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.

            Args:
                text (:obj:`string`): The sequence to be encoded.
                **kwargs (:obj: `dict`): Arguments passed to the model-specific `prepare_for_tokenization` preprocessing method.
        """
        # Simple mapping string => AddedToken for special tokens with specific tokenization behaviors
        all_special_tokens_extended = dict(
            (str(t), t) for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
        )

        text, kwargs = self.prepare_for_tokenization(text, **kwargs)

        if kwargs:
            logger.warning(f"Keyword arguments {kwargs} not recognized.")

        # TODO: should this be in the base class?
        if self.init_kwargs.get("do_lower_case", False):
            # convert non-special tokens to lowercase
            escaped_special_toks = [re.escape(s_tok) for s_tok in self.all_special_tokens]
            pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
            text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)

        def split_on_token(tok, text):
            result = []
            tok_extended = all_special_tokens_extended.get(tok, None)
            split_text = text.split(tok)
            full_word = ""
            for i, sub_text in enumerate(split_text):
                # AddedToken can control whitespace stripping around them.
                # We use them for GPT2 and Roberta to have different behavior depending on the special token
                # Cf. https://github.com/huggingface/transformers/pull/2778
                # and https://github.com/huggingface/transformers/issues/3788
                if isinstance(tok_extended, AddedToken):
                    if tok_extended.single_word:
                        # Try to avoid splitting on token
                        if (
                            i < len(split_text) - 1
                            and not _is_end_of_word(sub_text)
                            and not _is_start_of_word(split_text[i + 1])
                        ):
                            # Don't extract the special token
                            full_word += sub_text + tok
                        elif full_word:
                            full_word += sub_text
                            result += [full_word]
                            full_word = ""
                            continue
                    # Strip white spaces on the right
                    if tok_extended.rstrip and i > 0:
                        # A bit counter-intuitive but we strip the left of the string
                        # since tok_extended.rstrip means the special token is eating all white spaces on its right
                        sub_text = sub_text.lstrip()
                    # Strip white spaces on the left
                    if tok_extended.lstrip and i < len(split_text) - 1:
                        sub_text = sub_text.rstrip()  # Opposite here
                else:
                    # We strip left and right by default
                    if i < len(split_text) - 1:
                        sub_text = sub_text.rstrip()
                    if i > 0:
                        sub_text = sub_text.lstrip()

                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

        def split_on_tokens(tok_list, text):
            if not text.strip():
                return []
            if not tok_list:
                return self._tokenize(text)

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.unique_no_split_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return list(
                itertools.chain.from_iterable(
                    (
                        self._tokenize(token) if token not in self.unique_no_split_tokens else [token]
                        for token in tokenized_text
                    )
                )
            )

        no_split_token = self.unique_no_split_tokens
        tokenized_text = split_on_tokens(no_split_token, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Do NOT take care of added tokens.
        """
        raise NotImplementedError

    def convert_tokens_to_ids(self, tokens):
        """ Converts a token string (or a sequence of tokens) in a single integer id
            (or a sequence of ids), using the vocabulary.
        """
        if tokens is None:
            return None

        if isinstance(tokens, str):
            return self._convert_token_to_id_with_added_voc(tokens)

        ids = []
        for token in tokens:
            ids.append(self._convert_token_to_id_with_added_voc(token))
        return ids

    def _convert_token_to_id_with_added_voc(self, token):
        if token is None:
            return None

        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
        raise NotImplementedError

    def _encode_plus(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_pretokenized: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs
    ) -> BatchEncoding:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                return self.convert_tokens_to_ids(tokens)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_pretokenized:
                    tokens = list(itertools.chain(*(self.tokenize(t, is_pretokenized=True, **kwargs) for t in text)))
                    return self.convert_tokens_to_ids(tokens)
                else:
                    return self.convert_tokens_to_ids(text)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
                return text
            else:
                if is_pretokenized:
                    raise ValueError(
                        f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_pretokenized=True`."
                    )
                else:
                    raise ValueError(
                        f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
                    )

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers."
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
                "More information on available tokenizers at "
                "https://github.com/huggingface/transformers/pull/2674"
            )

        first_ids = get_input_ids(text)
        second_ids = get_input_ids(text_pair) if text_pair is not None else None

        return self.prepare_for_model(
            first_ids,
            pair_ids=second_ids,
            add_special_tokens=add_special_tokens,
            padding=padding_strategy.value,
            truncation=truncation_strategy.value,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            prepend_batch_axis=True,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            verbose=verbose,
        )

    def _batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[
            List[TextInput],
            List[TextInputPair],
            List[PreTokenizedInput],
            List[PreTokenizedInputPair],
            List[EncodedInput],
            List[EncodedInputPair],
        ],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_pretokenized: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs
    ) -> BatchEncoding:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                return self.convert_tokens_to_ids(tokens)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_pretokenized:
                    tokens = list(itertools.chain(*(self.tokenize(t, is_pretokenized=True, **kwargs) for t in text)))
                    return self.convert_tokens_to_ids(tokens)
                else:
                    return self.convert_tokens_to_ids(text)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
                return text
            else:
                raise ValueError(
                    "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
                )

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers."
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
            )

        input_ids = []
        for ids_or_pair_ids in batch_text_or_text_pairs:
            if not isinstance(ids_or_pair_ids, (list, tuple)):
                ids, pair_ids = ids_or_pair_ids, None
            elif is_pretokenized and not isinstance(ids_or_pair_ids[0], (list, tuple)):
                ids, pair_ids = ids_or_pair_ids, None
            else:
                ids, pair_ids = ids_or_pair_ids

            first_ids = get_input_ids(ids)
            second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
            input_ids.append((first_ids, second_ids))

        batch_outputs = self._batch_prepare_for_model(
            input_ids,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            return_tensors=return_tensors,
            verbose=verbose,
        )

        return BatchEncoding(batch_outputs)

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def _batch_prepare_for_model(
        self,
        batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[str] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_length: bool = False,
        verbose: bool = True,
    ) -> BatchEncoding:
        """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
        It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens

        Args:
            batch_ids_pairs: list of tokenized input ids or input ids pairs
        """

        batch_outputs = {}
        for first_ids, second_ids in batch_ids_pairs:
            outputs = self.prepare_for_model(
                first_ids,
                second_ids,
                add_special_tokens=add_special_tokens,
                padding=PaddingStrategy.DO_NOT_PAD.value,  # we pad in batch afterward
                truncation=truncation_strategy.value,
                max_length=max_length,
                stride=stride,
                pad_to_multiple_of=None,  # we pad in batch afterward
                return_attention_mask=False,  # we pad in batch afterward
                return_token_type_ids=return_token_type_ids,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_length=return_length,
                return_tensors=None,  # We convert the whole batch to tensors at the end
                prepend_batch_axis=False,
                verbose=verbose,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        batch_outputs = self.pad(
            batch_outputs,
            padding=padding_strategy.value,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
        )

        batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)

        return batch_outputs

    def prepare_for_tokenization(self, text: str, is_pretokenized=False, **kwargs) -> (str, dict):
        """ Performs any necessary transformations before tokenization.

            This method should pop the arguments from kwargs and return kwargs as well.
            We test kwargs at the end of the encoding process to be sure all the arguments have been used.
        """
        return (text, kwargs)

    def get_special_tokens_mask(
        self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` method.

        Args:
            token_ids_0: list of ids (must not contain special tokens)
            token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
                for sequence pairs
            already_has_special_tokens: (default False) Set to True if the token list is already formated with
                special tokens for the model

        Returns:
            A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))

    def convert_ids_to_tokens(
        self, ids: Union[int, List[int]], skip_special_tokens: bool = False
    ) -> Union[str, List[str]]:
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
        tokens = []
        for index in ids:
            index = int(index)
            if skip_special_tokens and index in self.all_special_ids:
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index: int) -> str:
        raise NotImplementedError

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
        """
        return " ".join(self.convert_ids_to_tokens(tokens))

    def decode(
        self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True
    ) -> str:
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)

        # To avoid mixing byte-level and unicode for byte-level BPT
        # we need to build string separatly for added tokens and byte-level tokens
        # cf. https://github.com/huggingface/transformers/issues/1133
        sub_texts = []
        current_sub_text = []
        for token in filtered_tokens:
            if skip_special_tokens and token in self.all_special_ids:
                continue
            if token in self.added_tokens_encoder:
                if current_sub_text:
                    sub_texts.append(self.convert_tokens_to_string(current_sub_text))
                    current_sub_text = []
                sub_texts.append(token)
            else:
                current_sub_text.append(token)
        if current_sub_text:
            sub_texts.append(self.convert_tokens_to_string(current_sub_text))
        text = " ".join(sub_texts)

        if clean_up_tokenization_spaces:
            clean_text = self.clean_up_tokenization(text)
            return clean_text
        else:
            return text

    def save_vocabulary(self, save_directory) -> Tuple[str]:
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
            and special token mappings.

            Please use :func:`~transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full
            Tokenizer state if you want to reload it using the :func:`~transformers.PreTrainedTokenizer.from_pretrained`
            class method.
        """
        raise NotImplementedError