File size: 4,798 Bytes
a166479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import torch
import torch.nn as nn
from .mask_predictor import SimpleDecoding
#from .backbone import MultiModalSwinTransformer
from .multimodal_swin_ppm import MultiModalSwin
from ._utils import LAVT, LAVTOne
__all__ = ['lavt', 'lavt_one']
# LAVT
def _segm_lavt(pretrained, args):
# initialize the SwinTransformer backbone with the specified version
if args.swin_type == 'tiny':
embed_dim = 96
depths = [2, 2, 6, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'small':
embed_dim = 96
depths = [2, 2, 18, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'base':
embed_dim = 128
depths = [2, 2, 18, 2]
num_heads = [4, 8, 16, 32]
elif args.swin_type == 'large':
embed_dim = 192
depths = [2, 2, 18, 2]
num_heads = [6, 12, 24, 48]
else:
assert False
# args.window12 added for test.py because state_dict is loaded after model initialization
if 'window12' in pretrained or args.window12:
print('Window size 12!')
window_size = 12
else:
window_size = 7
if args.mha:
mha = args.mha.split('-') # if non-empty, then ['a', 'b', 'c', 'd']
mha = [int(a) for a in mha]
else:
mha = [1, 1, 1, 1]
out_indices = (0, 1, 2, 3)
backbone = MultiModalSwin(embed_dim=embed_dim, depths=depths, num_heads=num_heads,
window_size=window_size,
ape=False, drop_path_rate=0.3, patch_norm=True,
out_indices=out_indices,
use_checkpoint=False, num_heads_fusion=mha,
fusion_drop=args.fusion_drop
)
if pretrained:
print('Initializing Multi-modal Swin Transformer weights from ' + pretrained)
backbone.init_weights(pretrained=pretrained)
else:
print('Randomly initialize Multi-modal Swin Transformer weights.')
backbone.init_weights()
model_map = [SimpleDecoding, LAVT]
classifier = model_map[0](8*embed_dim)
base_model = model_map[1]
model = base_model(backbone, classifier)
return model
def _load_model_lavt(pretrained, args):
model = _segm_lavt(pretrained, args)
return model
def lavt(pretrained='', args=None):
return _load_model_lavt(pretrained, args)
###############################################
# LAVT One: put BERT inside the overall model #
###############################################
def _segm_lavt_one(pretrained, args):
# initialize the SwinTransformer backbone with the specified version
if args.swin_type == 'tiny':
embed_dim = 96
depths = [2, 2, 6, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'small':
embed_dim = 96
depths = [2, 2, 18, 2]
num_heads = [3, 6, 12, 24]
elif args.swin_type == 'base':
embed_dim = 128
depths = [2, 2, 18, 2]
num_heads = [4, 8, 16, 32]
elif args.swin_type == 'large':
embed_dim = 192
depths = [2, 2, 18, 2]
num_heads = [6, 12, 24, 48]
else:
assert False
# args.window12 added for test.py because state_dict is loaded after model initialization
if 'window12' in pretrained or args.window12:
print('Window size 12!')
window_size = 12
else:
window_size = 7
if args.mha:
mha = args.mha.split('-') # if non-empty, then ['a', 'b', 'c', 'd']
mha = [int(a) for a in mha]
else:
mha = [1, 1, 1, 1]
out_indices = (0, 1, 2, 3)
backbone = MultiModalSwinTransformer(embed_dim=embed_dim, depths=depths, num_heads=num_heads,
window_size=window_size,
ape=False, drop_path_rate=0.3, patch_norm=True,
out_indices=out_indices,
use_checkpoint=False, num_heads_fusion=mha,
fusion_drop=args.fusion_drop
)
if pretrained:
print('Initializing Multi-modal Swin Transformer weights from ' + pretrained)
backbone.init_weights(pretrained=pretrained)
else:
print('Randomly initialize Multi-modal Swin Transformer weights.')
backbone.init_weights()
model_map = [SimpleDecoding, LAVTOne]
classifier = model_map[0](8*embed_dim)
base_model = model_map[1]
model = base_model(backbone, classifier, args)
return model
def _load_model_lavt_one(pretrained, args):
model = _segm_lavt_one(pretrained, args)
return model
def lavt_one(pretrained='', args=None):
return _load_model_lavt_one(pretrained, args)
|