File size: 4,798 Bytes
a166479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import torch.nn as nn
from .mask_predictor import SimpleDecoding
#from .backbone import MultiModalSwinTransformer
from .multimodal_swin_ppm import MultiModalSwin
from ._utils import LAVT, LAVTOne

__all__ = ['lavt', 'lavt_one']


# LAVT
def _segm_lavt(pretrained, args):
    # initialize the SwinTransformer backbone with the specified version
    if args.swin_type == 'tiny':
        embed_dim = 96
        depths = [2, 2, 6, 2]
        num_heads = [3, 6, 12, 24]
    elif args.swin_type == 'small':
        embed_dim = 96
        depths = [2, 2, 18, 2]
        num_heads = [3, 6, 12, 24]
    elif args.swin_type == 'base':
        embed_dim = 128
        depths = [2, 2, 18, 2]
        num_heads = [4, 8, 16, 32]
    elif args.swin_type == 'large':
        embed_dim = 192
        depths = [2, 2, 18, 2]
        num_heads = [6, 12, 24, 48]
    else:
        assert False
    # args.window12 added for test.py because state_dict is loaded after model initialization
    if 'window12' in pretrained or args.window12:
        print('Window size 12!')
        window_size = 12
    else:
        window_size = 7

    if args.mha:
        mha = args.mha.split('-')  # if non-empty, then ['a', 'b', 'c', 'd']
        mha = [int(a) for a in mha]
    else:
        mha = [1, 1, 1, 1]

    out_indices = (0, 1, 2, 3)
    backbone = MultiModalSwin(embed_dim=embed_dim, depths=depths, num_heads=num_heads,
                              window_size=window_size,
                              ape=False, drop_path_rate=0.3, patch_norm=True,
                              out_indices=out_indices,
                              use_checkpoint=False, num_heads_fusion=mha,
                              fusion_drop=args.fusion_drop
                              )
    if pretrained:
        print('Initializing Multi-modal Swin Transformer weights from ' + pretrained)
        backbone.init_weights(pretrained=pretrained)
    else:
        print('Randomly initialize Multi-modal Swin Transformer weights.')
        backbone.init_weights()

    model_map = [SimpleDecoding, LAVT]

    classifier = model_map[0](8*embed_dim)
    base_model = model_map[1]

    model = base_model(backbone, classifier)
    return model


def _load_model_lavt(pretrained, args):
    model = _segm_lavt(pretrained, args)
    return model


def lavt(pretrained='', args=None):
    return _load_model_lavt(pretrained, args)


###############################################
# LAVT One: put BERT inside the overall model #
###############################################
def _segm_lavt_one(pretrained, args):
    # initialize the SwinTransformer backbone with the specified version
    if args.swin_type == 'tiny':
        embed_dim = 96
        depths = [2, 2, 6, 2]
        num_heads = [3, 6, 12, 24]
    elif args.swin_type == 'small':
        embed_dim = 96
        depths = [2, 2, 18, 2]
        num_heads = [3, 6, 12, 24]
    elif args.swin_type == 'base':
        embed_dim = 128
        depths = [2, 2, 18, 2]
        num_heads = [4, 8, 16, 32]
    elif args.swin_type == 'large':
        embed_dim = 192
        depths = [2, 2, 18, 2]
        num_heads = [6, 12, 24, 48]
    else:
        assert False
    # args.window12 added for test.py because state_dict is loaded after model initialization
    if 'window12' in pretrained or args.window12:
        print('Window size 12!')
        window_size = 12
    else:
        window_size = 7

    if args.mha:
        mha = args.mha.split('-')  # if non-empty, then ['a', 'b', 'c', 'd']
        mha = [int(a) for a in mha]
    else:
        mha = [1, 1, 1, 1]

    out_indices = (0, 1, 2, 3)
    backbone = MultiModalSwinTransformer(embed_dim=embed_dim, depths=depths, num_heads=num_heads,
                                         window_size=window_size,
                                         ape=False, drop_path_rate=0.3, patch_norm=True,
                                         out_indices=out_indices,
                                         use_checkpoint=False, num_heads_fusion=mha,
                                         fusion_drop=args.fusion_drop
                                         )
    if pretrained:
        print('Initializing Multi-modal Swin Transformer weights from ' + pretrained)
        backbone.init_weights(pretrained=pretrained)
    else:
        print('Randomly initialize Multi-modal Swin Transformer weights.')
        backbone.init_weights()

    model_map = [SimpleDecoding, LAVTOne]

    classifier = model_map[0](8*embed_dim)
    base_model = model_map[1]

    model = base_model(backbone, classifier, args)
    return model


def _load_model_lavt_one(pretrained, args):
    model = _segm_lavt_one(pretrained, args)
    return model


def lavt_one(pretrained='', args=None):
    return _load_model_lavt_one(pretrained, args)