yxchng
add files
a166479
raw
history blame
9.09 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
from typing import List, Optional
from collections import OrderedDict
from scipy.io import loadmat
import numpy as np
import csv
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torchvision
from torch import Tensor
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def get_world_size() -> int:
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
# TODO make this more general
if tensor_list[0].ndim == 3:
if torchvision._is_tracing():
# nested_tensor_from_tensor_list() does not export well to ONNX
# call _onnx_nested_tensor_from_tensor_list() instead
return _onnx_nested_tensor_from_tensor_list(tensor_list)
# TODO make it support different-sized images
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
else:
raise ValueError("not supported")
return NestedTensor(tensor, mask)
# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
max_size = []
for i in range(tensor_list[0].dim()):
max_size_i = torch.max(
torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
).to(torch.int64)
max_size.append(max_size_i)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# m[: img.shape[1], :img.shape[2]] = False
# which is not yet supported in onnx
padded_imgs = []
padded_masks = []
for img in tensor_list:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
padded_masks.append(padded_mask.to(torch.bool))
tensor = torch.stack(padded_imgs)
mask = torch.stack(padded_masks)
return NestedTensor(tensor, mask=mask)
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def load_parallal_model(model, state_dict_):
state_dict = OrderedDict()
for key in state_dict_:
if key.startswith('module') and not key.startswith('module_list'):
state_dict[key[7:]] = state_dict_[key]
else:
state_dict[key] = state_dict_[key]
# check loaded parameters and created model parameters
model_state_dict = model.state_dict()
for key in state_dict:
if key in model_state_dict:
if state_dict[key].shape != model_state_dict[key].shape:
print('Skip loading parameter {}, required shape{}, loaded shape{}.'.format(
key, model_state_dict[key].shape, state_dict[key].shape))
state_dict[key] = model_state_dict[key]
else:
print('Drop parameter {}.'.format(key))
for key in model_state_dict:
if key not in state_dict:
print('No param {}.'.format(key))
state_dict[key] = model_state_dict[key]
model.load_state_dict(state_dict, strict=False)
return model
class ADEVisualize(object):
def __init__(self):
self.colors = loadmat('dataset/color150.mat')['colors']
self.names = {}
with open('dataset/object150_info.csv') as f:
reader = csv.reader(f)
next(reader)
for row in reader:
self.names[int(row[0])] = row[5].split(";")[0]
def unique(self, ar, return_index=False, return_inverse=False, return_counts=False):
ar = np.asanyarray(ar).flatten()
optional_indices = return_index or return_inverse
optional_returns = optional_indices or return_counts
if ar.size == 0:
if not optional_returns:
ret = ar
else:
ret = (ar,)
if return_index:
ret += (np.empty(0, np.bool),)
if return_inverse:
ret += (np.empty(0, np.bool),)
if return_counts:
ret += (np.empty(0, np.intp),)
return ret
if optional_indices:
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
aux = ar[perm]
else:
ar.sort()
aux = ar
flag = np.concatenate(([True], aux[1:] != aux[:-1]))
if not optional_returns:
ret = aux[flag]
else:
ret = (aux[flag],)
if return_index:
ret += (perm[flag],)
if return_inverse:
iflag = np.cumsum(flag) - 1
inv_idx = np.empty(ar.shape, dtype=np.intp)
inv_idx[perm] = iflag
ret += (inv_idx,)
if return_counts:
idx = np.concatenate(np.nonzero(flag) + ([ar.size],))
ret += (np.diff(idx),)
return ret
def colorEncode(self, labelmap, colors, mode='RGB'):
labelmap = labelmap.astype('int')
labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),
dtype=np.uint8)
for label in self.unique(labelmap):
if label < 0:
continue
labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \
np.tile(colors[label],
(labelmap.shape[0], labelmap.shape[1], 1))
if mode == 'BGR':
return labelmap_rgb[:, :, ::-1]
else:
return labelmap_rgb
def show_result(self, img, pred, save_path=None):
pred = np.int32(pred)
# colorize prediction
pred_color = self.colorEncode(pred, self.colors)
pil_img = img.convert('RGBA')
pred_color = Image.fromarray(pred_color).convert('RGBA')
im_vis = Image.blend(pil_img, pred_color, 0.6)
if save_path is not None:
im_vis.save(save_path)
# Image.fromarray(im_vis).save(save_path)
else:
plt.imshow(im_vis)