hf-llm-api / messagers /message_composer.py
Hansimov's picture
:gem: [Feature] MessageCompoer: decompose to system and input prompt
0b6e0c9
raw
history blame
9.72 kB
import re
from pprint import pprint
from transformers import AutoTokenizer
from constants.models import AVAILABLE_MODELS, MODEL_MAP
from tclogger import logger
class MessageComposer:
def __init__(self, model: str = None):
if model in AVAILABLE_MODELS:
self.model = model
else:
self.model = "mixtral-8x7b"
self.model_fullname = MODEL_MAP[self.model]
self.system_roles = ["system"]
self.inst_roles = ["user", "system", "inst"]
self.answer_roles = ["assistant", "bot", "answer", "model"]
self.default_role = "user"
def concat_messages_by_role(self, messages):
def is_same_role(role1, role2):
if (
(role1 == role2)
or (role1 in self.inst_roles and role2 in self.inst_roles)
or (role1 in self.answer_roles and role2 in self.answer_roles)
):
return True
else:
return False
concat_messages = []
for message in messages:
role = message["role"]
content = message["content"]
if concat_messages and is_same_role(role, concat_messages[-1]["role"]):
concat_messages[-1]["content"] += "\n" + content
else:
if role in self.inst_roles:
message["role"] = "inst"
elif role in self.answer_roles:
message["role"] = "answer"
else:
message["role"] = "inst"
concat_messages.append(message)
return concat_messages
def merge(self, messages) -> str:
# Templates for Chat Models
# - https://huggingface.co/docs/transformers/main/en/chat_templating
# - https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
# - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
# - https://huggingface.co/openchat/openchat-3.5-0106
# - https://huggingface.co/google/gemma-7b-it#chat-template
# Mistral and Mixtral:
# <s> [INST] Instruction [/INST] Model answer </s> [INST] Follow-up instruction [/INST]
# Nous Mixtral:
# <|im_start|>system
# You are "Hermes 2".<|im_end|>
# <|im_start|>user
# Hello, who are you?<|im_end|>
# <|im_start|>assistant
# OpenChat:
# GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
# Google Gemma-it
# <start_of_turn>user
# How does the brain work?<end_of_turn>
# <start_of_turn>model
self.messages = messages
self.merged_str = ""
# https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
if self.model in ["mixtral-8x7b", "mistral-7b"]:
self.messages = self.concat_messages_by_role(messages)
self.cached_str = ""
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.cached_str = f"[INST] {content} [/INST]"
elif role in self.answer_roles:
self.merged_str += f"<s> {self.cached_str} {content} </s>\n"
self.cached_str = ""
else:
self.cached_str = f"[INST] {content} [/INST]"
if self.cached_str:
self.merged_str += f"{self.cached_str}"
# https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
elif self.model in ["nous-mixtral-8x7b"]:
self.merged_str_list = []
for message in self.messages:
role = message["role"]
content = message["content"]
if role not in ["system", "user", "assistant"]:
role = self.default_role
message_line = f"<|im_start|>{role}\n{content}<|im_end|>"
self.merged_str_list.append(message_line)
self.merged_str_list.append("<|im_start|>assistant")
self.merged_str = "\n".join(self.merged_str_list)
# https://huggingface.co/openchat/openchat-3.5-0106
elif self.model in ["openchat-3.5"]:
self.messages = self.concat_messages_by_role(messages)
self.merged_str_list = []
self.end_of_turn = "<|end_of_turn|>"
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.merged_str_list.append(
f"GPT4 Correct User:\n{content}{self.end_of_turn}"
)
elif role in self.answer_roles:
self.merged_str_list.append(
f"GPT4 Correct Assistant:\n{content}{self.end_of_turn}"
)
else:
self.merged_str_list.append(
f"GPT4 Correct User: {content}{self.end_of_turn}"
)
self.merged_str_list.append(f"GPT4 Correct Assistant:\n")
self.merged_str = "\n".join(self.merged_str_list)
# https://huggingface.co/google/gemma-1.1-7b-it#chat-template
elif self.model in ["gemma-7b"]:
self.messages = self.concat_messages_by_role(messages)
self.merged_str_list = []
self.end_of_turn = "<end_of_turn>"
self.start_of_turn = "<start_of_turn>"
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.merged_str_list.append(
f"{self.start_of_turn}user\n{content}{self.end_of_turn}"
)
elif role in self.answer_roles:
self.merged_str_list.append(
f"{self.start_of_turn}model\n{content}{self.end_of_turn}"
)
else:
self.merged_str_list.append(
f"{self.start_of_turn}user\n{content}{self.end_of_turn}"
)
self.merged_str_list.append(f"{self.start_of_turn}model\n")
self.merged_str = "<bos>" + "\n".join(self.merged_str_list)
# https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
# https://huggingface.co/openchat/openchat-3.5-0106
# elif self.model in ["openchat-3.5", "nous-mixtral-8x7b"]:
elif self.model in ["openchat-3.5", "command-r-plus", "gemma-7b"]:
tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
self.merged_str = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
else:
self.merged_str = "\n\n".join(
[f"{message['role']}: {message['content']}" for message in messages]
)
return self.merged_str
def decompose_to_system_and_input_prompt(
self, messages: list[dict], append_assistant=True
):
system_prompt_list = []
user_and_assistant_messages = []
for message in messages:
role = message["role"]
content = message["content"]
if role in self.system_roles:
system_prompt_list.append(content)
else:
user_and_assistant_messages.append(message)
system_prompt = "\n".join(system_prompt_list)
input_prompt_list = []
input_messages = self.concat_messages_by_role(user_and_assistant_messages)
for message in input_messages:
role = message["role"]
content = message["content"]
if role in self.answer_roles:
role_content_str = f"`assistant`:\n{content}"
else:
role_content_str = f"`user`:\n{content}"
input_prompt_list.append(role_content_str)
input_prompt = "\n\n".join(input_prompt_list)
if append_assistant:
input_prompt += "\n\n`assistant`:"
return system_prompt, input_prompt
if __name__ == "__main__":
# model = "mixtral-8x7b"
# model = "nous-mixtral-8x7b"
model = "gemma-7b"
# model = "openchat-3.5"
# model = "command-r-plus"
composer = MessageComposer(model)
messages = [
{
"role": "system",
"content": "You are a LLM developed by OpenAI.\nYour name is GPT-4.",
},
{"role": "user", "content": "Hello, who are you?"},
{"role": "assistant", "content": "I am a bot."},
{"role": "user", "content": "What is your name?"},
# {"role": "assistant", "content": "My name is Bing."},
# {"role": "user", "content": "Tell me a joke."},
# {"role": "assistant", "content": "What is a robot's favorite type of music?"},
# {
# "role": "user",
# "content": "How many questions have I asked? Please list them.",
# },
]
# logger.note(f"model: {composer.model}")
# merged_str = composer.merge(messages)
# logger.note("merged_str:")
# logger.mesg(merged_str)
system_prompt, input_prompt = composer.decompose_to_system_and_input_prompt(
messages
)
logger.note("system_prompt:")
logger.mesg(system_prompt)
logger.note("input_prompt:")
logger.mesg(input_prompt)
# python -m messagers.message_composer