Spaces:
Sleeping
Sleeping
Rename main.py to app.py
Browse files- main.py → app.py +71 -73
main.py → app.py
RENAMED
@@ -1,73 +1,71 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
import os
|
5 |
-
import google.generativeai as genai
|
6 |
-
import joblib
|
7 |
-
|
8 |
-
# Load environment variables
|
9 |
-
load_dotenv()
|
10 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
11 |
-
|
12 |
-
# Load the machine learning model
|
13 |
-
try:
|
14 |
-
model = joblib.load('./movie_review_classifier.joblib')
|
15 |
-
except Exception as e:
|
16 |
-
raise ImportError(f"Failed to load model: {e}")
|
17 |
-
|
18 |
-
app = FastAPI()
|
19 |
-
|
20 |
-
# Define models for requests
|
21 |
-
class QueryRequest(BaseModel):
|
22 |
-
question: str
|
23 |
-
|
24 |
-
class Review(BaseModel):
|
25 |
-
text: str
|
26 |
-
|
27 |
-
# Initialize the Gemini chat model
|
28 |
-
gemini_model = genai.GenerativeModel("gemini-pro")
|
29 |
-
chat = gemini_model.start_chat(history=[])
|
30 |
-
|
31 |
-
mental_health_prompt = """
|
32 |
-
You are an expert in providing mental health support. When a user describes their mental health issues,
|
33 |
-
you should provide relevant articles or blog posts to assist them.
|
34 |
-
"""
|
35 |
-
|
36 |
-
# Gemini response function
|
37 |
-
def get_gemini_response(question, prompt):
|
38 |
-
response = chat.send_message(f"{prompt} {question}", stream=True)
|
39 |
-
return [chunk.text for chunk in response]
|
40 |
-
|
41 |
-
# Function to retrieve articles from a database or external source
|
42 |
-
def get_articles(query):
|
43 |
-
return [
|
44 |
-
{"title": "Understanding Anxiety", "url": "https://newsinhealth.nih.gov/2016/03/understanding-anxiety-disorders", "summary": "A comprehensive guide on anxiety disorders."},
|
45 |
-
{"title": "Coping with Depression", "url": "https://www.helpguide.org/articles/depression/coping-with-depression.htm", "summary": "Effective strategies for dealing with depression."}
|
46 |
-
]
|
47 |
-
|
48 |
-
# Mental health support endpoint
|
49 |
-
@app.post("/rag")
|
50 |
-
async def mental_health_support(request: QueryRequest):
|
51 |
-
try:
|
52 |
-
responses = get_gemini_response(request.question, mental_health_prompt)
|
53 |
-
articles = get_articles(request.question)
|
54 |
-
result = {"responses": responses, "articles": articles}
|
55 |
-
return result
|
56 |
-
except Exception as e:
|
57 |
-
raise HTTPException(status_code=500, detail=str(e))
|
58 |
-
|
59 |
-
# Classification endpoint
|
60 |
-
@app.post("/classification")
|
61 |
-
async def classify_review(review: Review):
|
62 |
-
try:
|
63 |
-
prediction = model.predict([review.text])
|
64 |
-
return {"predicted_sentiment": prediction[0]}
|
65 |
-
except Exception as e:
|
66 |
-
raise HTTPException(status_code=500, detail=str(e))
|
67 |
-
|
68 |
-
# Main function to run the server
|
69 |
-
if __name__ == "__main__":
|
70 |
-
import uvicorn
|
71 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
72 |
-
|
73 |
-
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
import google.generativeai as genai
|
6 |
+
import joblib
|
7 |
+
|
8 |
+
# Load environment variables
|
9 |
+
load_dotenv()
|
10 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
11 |
+
|
12 |
+
# Load the machine learning model
|
13 |
+
try:
|
14 |
+
model = joblib.load('./movie_review_classifier.joblib')
|
15 |
+
except Exception as e:
|
16 |
+
raise ImportError(f"Failed to load model: {e}")
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
# Define models for requests
|
21 |
+
class QueryRequest(BaseModel):
|
22 |
+
question: str
|
23 |
+
|
24 |
+
class Review(BaseModel):
|
25 |
+
text: str
|
26 |
+
|
27 |
+
# Initialize the Gemini chat model
|
28 |
+
gemini_model = genai.GenerativeModel("gemini-pro")
|
29 |
+
chat = gemini_model.start_chat(history=[])
|
30 |
+
|
31 |
+
mental_health_prompt = """
|
32 |
+
You are an expert in providing mental health support. When a user describes their mental health issues,
|
33 |
+
you should provide relevant articles or blog posts to assist them.
|
34 |
+
"""
|
35 |
+
|
36 |
+
# Gemini response function
|
37 |
+
def get_gemini_response(question, prompt):
|
38 |
+
response = chat.send_message(f"{prompt} {question}", stream=True)
|
39 |
+
return [chunk.text for chunk in response]
|
40 |
+
|
41 |
+
# Function to retrieve articles from a database or external source
|
42 |
+
def get_articles(query):
|
43 |
+
return [
|
44 |
+
{"title": "Understanding Anxiety", "url": "https://newsinhealth.nih.gov/2016/03/understanding-anxiety-disorders", "summary": "A comprehensive guide on anxiety disorders."},
|
45 |
+
{"title": "Coping with Depression", "url": "https://www.helpguide.org/articles/depression/coping-with-depression.htm", "summary": "Effective strategies for dealing with depression."}
|
46 |
+
]
|
47 |
+
|
48 |
+
# Mental health support endpoint
|
49 |
+
@app.post("/rag")
|
50 |
+
async def mental_health_support(request: QueryRequest):
|
51 |
+
try:
|
52 |
+
responses = get_gemini_response(request.question, mental_health_prompt)
|
53 |
+
articles = get_articles(request.question)
|
54 |
+
result = {"responses": responses, "articles": articles}
|
55 |
+
return result
|
56 |
+
except Exception as e:
|
57 |
+
raise HTTPException(status_code=500, detail=str(e))
|
58 |
+
|
59 |
+
# Classification endpoint
|
60 |
+
@app.post("/classification")
|
61 |
+
async def classify_review(review: Review):
|
62 |
+
try:
|
63 |
+
prediction = model.predict([review.text])
|
64 |
+
return {"predicted_sentiment": prediction[0]}
|
65 |
+
except Exception as e:
|
66 |
+
raise HTTPException(status_code=500, detail=str(e))
|
67 |
+
|
68 |
+
# Main function to run the server
|
69 |
+
if __name__ == "__main__":
|
70 |
+
import uvicorn
|
71 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|