Spaces:
Sleeping
Sleeping
import logging | |
import os | |
from collections import OrderedDict | |
from functools import partial | |
import torch | |
import re | |
import math | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from diffusers.models.attention_processor import Attention | |
from diffusers.utils import deprecate | |
from diffusers.models.embeddings import apply_rotary_emb | |
def scaled_dot_product_attention_atten_weight_only( | |
query, key, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None | |
) -> torch.Tensor: | |
L, S = query.size(-2), key.size(-2) | |
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale | |
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device) | |
if is_causal: | |
assert attn_mask is None | |
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) | |
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) | |
attn_bias.to(query.dtype) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
else: | |
attn_bias += attn_mask | |
attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
attn_weight += attn_bias | |
attn_weight = torch.softmax(attn_weight, dim=-1) | |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
return attn_weight | |
def apply_rope(xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def masking_fn(hidden_states, kwargs): | |
lamb = kwargs["lamb"].view(1, kwargs["lamb"].shape[0], 1, 1) | |
if kwargs.get("masking", None) == "sigmoid": | |
mask = torch.sigmoid(lamb) | |
elif kwargs.get("masking", None) == "binary": | |
mask = lamb | |
elif kwargs.get("masking", None) == "continues2binary": | |
# TODO: this might cause potential issue as it hard threshold at 0 | |
mask = (lamb > 0).float() | |
elif kwargs.get("masking", None) == "no_masking": | |
mask = torch.ones_like(lamb) | |
else: | |
raise NotImplementedError | |
epsilon = kwargs.get("epsilon", 0.0) | |
hidden_states = hidden_states * mask + torch.randn_like(hidden_states) * epsilon * ( | |
1 - mask | |
) | |
return hidden_states | |
class FluxAttnProcessor2_0_Masking: | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError( | |
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
) | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.FloatTensor: | |
batch_size, _, _ = ( | |
hidden_states.shape | |
if encoder_hidden_states is None | |
else encoder_hidden_states.shape | |
) | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q( | |
encoder_hidden_states_query_proj | |
) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k( | |
encoder_hidden_states_key_proj | |
) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False | |
) | |
if kwargs.get("lamb", None) is not None: | |
hidden_states = masking_fn(hidden_states, kwargs) | |
hidden_states = hidden_states.transpose(1, 2).reshape( | |
batch_size, -1, attn.heads * head_dim | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
else: | |
return hidden_states | |
class AttnProcessor2_0_Masking: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError( | |
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
) | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
*args, | |
**kwargs, | |
): | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = ( | |
"The `scale` argument is deprecated and will be ignored. " | |
"Please remove it, as passing it will raise an error " | |
"in the future. `scale` should directly be passed while " | |
"calling the underlying pipeline component i.e., via " | |
"`cross_attention_kwargs`." | |
) | |
deprecate("scale", "1.0.0", deprecation_message) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view( | |
batch_size, channel, height * width | |
).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape | |
if encoder_hidden_states is None | |
else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask( | |
attention_mask, sequence_length, batch_size | |
) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view( | |
batch_size, attn.heads, -1, attention_mask.shape[-1] | |
) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( | |
1, 2 | |
) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states( | |
encoder_hidden_states | |
) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if getattr(attn, "norm_q", None) is not None: | |
query = attn.norm_q(query) | |
if getattr(attn, "norm_k", None) is not None: | |
key = attn.norm_k(key) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
if kwargs.get("return_attention", True): | |
# add the attention output from F.scaled_dot_product_attention | |
attn_weight = scaled_dot_product_attention_atten_weight_only( | |
query, key, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states_aft_attention_ops = hidden_states.clone() | |
attn_weight_old = attn_weight.to(hidden_states.device).clone() | |
else: | |
hidden_states_aft_attention_ops = None | |
attn_weight_old = None | |
# masking for the hidden_states after the attention ops | |
if kwargs.get("lamb", None) is not None: | |
hidden_states = masking_fn(hidden_states, kwargs) | |
hidden_states = hidden_states.transpose(1, 2).reshape( | |
batch_size, -1, attn.heads * head_dim | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape( | |
batch_size, channel, height, width | |
) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states, hidden_states_aft_attention_ops, attn_weight_old | |
class BaseCrossAttentionHooker: | |
def __init__( | |
self, | |
pipeline, | |
regex, | |
dtype, | |
head_num_filter, | |
masking, | |
model_name, | |
attn_name, | |
use_log, | |
eps, | |
): | |
self.pipeline = pipeline | |
# unet for SD2 SDXL, transformer for SD3, FLUX DIT | |
self.net = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer | |
self.model_name = model_name | |
self.module_heads = OrderedDict() | |
self.masking = masking | |
self.hook_dict = {} | |
self.regex = regex | |
self.dtype = dtype | |
self.head_num_filter = head_num_filter | |
self.attn_name = attn_name | |
self.logger = logging.getLogger(__name__) | |
self.use_log = use_log # use log parameter to control hard_discrete | |
self.eps = eps | |
def add_hooks_to_cross_attention(self, hook_fn: callable): | |
""" | |
Add forward hooks to every cross attention | |
:param hook_fn: a callable to be added to torch nn module as a hook | |
:return: | |
""" | |
total_hooks = 0 | |
for name, module in self.net.named_modules(): | |
name_last_word = name.split(".")[-1] | |
if self.attn_name in name_last_word: | |
if re.match(self.regex, name): | |
hook_fn = partial(hook_fn, name=name) | |
hook = module.register_forward_hook(hook_fn, with_kwargs=True) | |
self.hook_dict[name] = hook | |
self.module_heads[name] = module.heads | |
self.logger.info( | |
f"Adding hook to {name}, module.heads: {module.heads}" | |
) | |
total_hooks += 1 | |
self.logger.info(f"Total hooks added: {total_hooks}") | |
def clear_hooks(self): | |
"""clear all hooks""" | |
for hook in self.hook_dict.values(): | |
hook.remove() | |
self.hook_dict.clear() | |
class CrossAttentionExtractionHook(BaseCrossAttentionHooker): | |
def __init__( | |
self, | |
pipeline, | |
dtype, | |
head_num_filter, | |
masking, | |
dst, | |
regex=None, | |
epsilon=0.0, | |
binary=False, | |
return_attention=False, | |
model_name="sdxl", | |
attn_name="attn", | |
use_log=False, | |
eps=1e-6, | |
): | |
super().__init__( | |
pipeline, | |
regex, | |
dtype, | |
head_num_filter, | |
masking=masking, | |
model_name=model_name, | |
attn_name=attn_name, | |
use_log=use_log, | |
eps=eps, | |
) | |
if model_name == "sdxl": | |
self.attention_processor = AttnProcessor2_0_Masking() | |
elif model_name == "flux": | |
self.attention_processor = FluxAttnProcessor2_0_Masking() | |
self.lambs = [] | |
self.lambs_module_names = [] | |
self.cross_attn = [] | |
self.hook_counter = 0 | |
self.device = ( | |
self.pipeline.unet.device | |
if hasattr(self.pipeline, "unet") | |
else self.pipeline.transformer.device | |
) | |
self.dst = dst | |
self.epsilon = epsilon | |
self.binary = binary | |
self.return_attention = return_attention | |
self.model_name = model_name | |
def clean_cross_attn(self): | |
self.cross_attn = [] | |
def validate_dst(self): | |
if os.path.exists(self.dst): | |
raise ValueError(f"Destination {self.dst} already exists") | |
def save(self, name: str = None): | |
if name is not None: | |
dst = os.path.join(os.path.dirname(self.dst), name) | |
else: | |
dst = self.dst | |
dst_dir = os.path.dirname(dst) | |
if not os.path.exists(dst_dir): | |
self.logger.info(f"Creating directory {dst_dir}") | |
os.makedirs(dst_dir) | |
torch.save(self.lambs, dst) | |
def get_lambda_block_names(self): | |
return self.lambs_module_names | |
def load(self, device, threshold=2.5): | |
if os.path.exists(self.dst): | |
self.logger.info(f"loading lambda from {self.dst}") | |
self.lambs = torch.load(self.dst, weights_only=True, map_location=device) | |
if self.binary: | |
# set binary masking for each lambda by using clamp | |
self.lambs = [ | |
(torch.relu(lamb - threshold) > 0).float() for lamb in self.lambs | |
] | |
else: | |
self.logger.info("skipping loading, training from scratch") | |
def binarize(self, scope: str, ratio: float): | |
assert scope in ["local", "global"], "scope must be either local or global" | |
assert ( | |
not self.binary | |
), "binarization is not supported when using binary mask already" | |
if scope == "local": | |
# Local binarization | |
for i, lamb in enumerate(self.lambs): | |
num_heads = lamb.size(0) | |
num_activate_heads = int(num_heads * ratio) | |
# Sort the lambda values with stable sorting to maintain order for equal values | |
sorted_lamb, sorted_indices = torch.sort( | |
lamb, descending=True, stable=True | |
) | |
# Find the threshold value | |
threshold = sorted_lamb[num_activate_heads - 1] | |
# Create a mask based on the sorted indices | |
mask = torch.zeros_like(lamb) | |
mask[sorted_indices[:num_activate_heads]] = 1.0 | |
# Binarize the lambda based on the threshold and the mask | |
self.lambs[i] = torch.where( | |
lamb > threshold, torch.ones_like(lamb), mask | |
) | |
else: | |
# Global binarization | |
all_lambs = torch.cat([lamb.flatten() for lamb in self.lambs]) | |
num_total = all_lambs.numel() | |
num_activate = int(num_total * ratio) | |
# Sort all lambda values globally with stable sorting | |
sorted_lambs, sorted_indices = torch.sort( | |
all_lambs, descending=True, stable=True | |
) | |
# Find the global threshold value | |
threshold = sorted_lambs[num_activate - 1] | |
# Create a global mask based on the sorted indices | |
global_mask = torch.zeros_like(all_lambs) | |
global_mask[sorted_indices[:num_activate]] = 1.0 | |
# Binarize all lambdas based on the global threshold and mask | |
start_idx = 0 | |
for i in range(len(self.lambs)): | |
end_idx = start_idx + self.lambs[i].numel() | |
lamb_mask = global_mask[start_idx:end_idx].reshape(self.lambs[i].shape) | |
self.lambs[i] = torch.where( | |
self.lambs[i] > threshold, torch.ones_like(self.lambs[i]), lamb_mask | |
) | |
start_idx = end_idx | |
self.binary = True | |
def bizarize_threshold(self, threshold: float): | |
""" | |
Binarize lambda values based on a predefined threshold. | |
:param threshold: The threshold value for binarization | |
""" | |
assert ( | |
not self.binary | |
), "Binarization is not supported when using binary mask already" | |
for i in range(len(self.lambs)): | |
self.lambs[i] = (self.lambs[i] >= threshold).float() | |
self.binary = True | |
def get_cross_attn_extraction_hook(self, init_value=1.0): | |
"""get a hook function to extract cross attention""" | |
# the reason to use a function inside a function is to save the extracted cross attention | |
def hook_fn(module, args, kwargs, output, name): | |
# initialize lambda with acual head dim in the first run | |
if self.lambs[self.hook_counter] is None: | |
self.lambs[self.hook_counter] = ( | |
torch.ones( | |
module.heads, device=self.pipeline.device, dtype=self.dtype | |
) | |
* init_value | |
) | |
# Only set requires_grad to True when the head number is larger than the filter | |
if self.head_num_filter <= module.heads: | |
self.lambs[self.hook_counter].requires_grad = True | |
# load attn lambda module name for logging | |
self.lambs_module_names[self.hook_counter] = name | |
if self.model_name == "sdxl": | |
hidden_states, _, attention_output = self.attention_processor( | |
module, | |
args[0], | |
encoder_hidden_states=kwargs["encoder_hidden_states"], | |
attention_mask=kwargs["attention_mask"], | |
lamb=self.lambs[self.hook_counter], | |
masking=self.masking, | |
epsilon=self.epsilon, | |
return_attention=self.return_attention, | |
use_log=self.use_log, | |
eps=self.eps, | |
) | |
if attention_output is not None: | |
self.cross_attn.append(attention_output) | |
self.hook_counter += 1 | |
self.hook_counter %= len(self.lambs) | |
return hidden_states | |
elif self.model_name == "flux": | |
encoder_hidden_states = kwargs.get("encoder_hidden_states", None) | |
# flux has two different attention processors, FluxSingleAttnProcessor and FluxAttnProcessor | |
if "single" in name: | |
hidden_states = self.attention_processor( | |
module, | |
hidden_states=kwargs.get("hidden_states", None), | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=kwargs.get("attention_mask", None), | |
image_rotary_emb=kwargs.get("image_rotary_emb", None), | |
lamb=self.lambs[self.hook_counter], | |
masking=self.masking, | |
epsilon=self.epsilon, | |
use_log=self.use_log, | |
eps=self.eps, | |
) | |
self.hook_counter += 1 | |
self.hook_counter %= len(self.lambs) | |
return hidden_states | |
else: | |
hidden_states, encoder_hidden_states = self.attention_processor( | |
module, | |
hidden_states=kwargs.get("hidden_states", None), | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=kwargs.get("attention_mask", None), | |
image_rotary_emb=kwargs.get("image_rotary_emb", None), | |
lamb=self.lambs[self.hook_counter], | |
masking=self.masking, | |
epsilon=self.epsilon, | |
use_log=self.use_log, | |
eps=self.eps, | |
) | |
self.hook_counter += 1 | |
self.hook_counter %= len(self.lambs) | |
return hidden_states, encoder_hidden_states | |
return hook_fn | |
def add_hooks(self, init_value=1.0): | |
hook_fn = self.get_cross_attn_extraction_hook(init_value) | |
self.add_hooks_to_cross_attention(hook_fn) | |
# initialize the lambda | |
self.lambs = [None] * len(self.module_heads) | |
# initialize the lambda module names | |
self.lambs_module_names = [None] * len(self.module_heads) | |
def get_process_cross_attn_result(self, text_seq_length, timestep: int = -1): | |
if isinstance(timestep, str): | |
timestep = int(timestep) | |
# num_lambda_block contains lambda (head masking) | |
num_lambda_block = len(self.lambs) | |
# get the start and end position of the timestep | |
start_pos = timestep * num_lambda_block | |
end_pos = (timestep + 1) * num_lambda_block | |
if end_pos > len(self.cross_attn): | |
raise ValueError(f"timestep {timestep} is out of range") | |
# list[cross_attn_map] num_layer x [batch, num_heads, seq_vis_tokens, seq_text_tokens] | |
attn_maps = self.cross_attn[start_pos:end_pos] | |
def heatmap(attn_list, attn_idx, head_idx, text_idx): | |
# only select second element in the tuple (with text guided attention) | |
# layer_idx, 1, head_idx, seq_vis_tokens, seq_text_tokens | |
map = attn_list[attn_idx][1][head_idx][:][:, text_idx] | |
# get the size of the heatmap | |
size = int(map.shape[0] ** 0.5) | |
map = map.view(size, size, 1) | |
data = map.cpu().float().numpy() | |
return data | |
output_dict = {} | |
for lambda_block_idx, lambda_block_name in zip( | |
range(num_lambda_block), self.lambs_module_names | |
): | |
data_list = [] | |
for head_idx in range(len(self.lambs[lambda_block_idx])): | |
for token_idx in range(text_seq_length): | |
# number of heatmap is equal to the number of tokens in the text sequence X number of heads | |
data_list.append( | |
heatmap(attn_maps, lambda_block_idx, head_idx, token_idx) | |
) | |
output_dict[lambda_block_name] = { | |
"attn_map": data_list, | |
"lambda": self.lambs[lambda_block_idx], | |
} | |
return output_dict | |