Spaces:
Sleeping
Sleeping
zhangyang-0123
commited on
Commit
·
d2d3f28
1
Parent(s):
fa31c55
change layout to lost one model
Browse files
app.py
CHANGED
@@ -11,8 +11,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use
|
12 |
torch_dtype = torch.bfloat16
|
13 |
|
14 |
-
pipe = FluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
-
pipe = pipe.to(device)
|
16 |
|
17 |
# load pruned model
|
18 |
pruned_pipe = FluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
@@ -29,14 +29,12 @@ MAX_IMAGE_SIZE = 1024
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def generate_images(prompt, seed, steps):
|
32 |
-
pipe.to("cuda")
|
33 |
-
pruned_pipe.to("cuda")
|
34 |
# Run the model and return images directly
|
35 |
-
g_cpu = torch.Generator("cuda").manual_seed(seed)
|
36 |
-
original_image = pipe(prompt=prompt, generator=g_cpu, num_inference_steps=steps).images[0]
|
37 |
g_cpu = torch.Generator("cuda").manual_seed(seed)
|
38 |
ecodiff_image = pruned_pipe(prompt=prompt, generator=g_cpu, num_inference_steps=steps).images[0]
|
39 |
-
return
|
40 |
|
41 |
|
42 |
examples = [
|
@@ -56,6 +54,8 @@ css = """
|
|
56 |
|
57 |
header = """
|
58 |
# 🌱 EcoDiff Pruned FLUX-Schnell (20% Pruning Ratio)
|
|
|
|
|
59 |
"""
|
60 |
|
61 |
header_2 = """
|
@@ -95,7 +95,7 @@ with gr.Blocks(css=css) as demo:
|
|
95 |
inputs=[prompt],
|
96 |
)
|
97 |
with gr.Row():
|
98 |
-
original_output = gr.Image(label="Original Output")
|
99 |
ecodiff_output = gr.Image(label="EcoDiff Output")
|
100 |
gr.on(
|
101 |
triggers=[generate_btn.click, prompt.submit],
|
@@ -105,7 +105,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
seed,
|
106 |
steps,
|
107 |
],
|
108 |
-
outputs=[
|
109 |
)
|
110 |
|
111 |
if __name__ == "__main__":
|
|
|
11 |
model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use
|
12 |
torch_dtype = torch.bfloat16
|
13 |
|
14 |
+
# pipe = FluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
+
# pipe = pipe.to(device)
|
16 |
|
17 |
# load pruned model
|
18 |
pruned_pipe = FluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def generate_images(prompt, seed, steps):
|
|
|
|
|
32 |
# Run the model and return images directly
|
33 |
+
# g_cpu = torch.Generator("cuda").manual_seed(seed)
|
34 |
+
# original_image = pipe(prompt=prompt, generator=g_cpu, num_inference_steps=steps).images[0]
|
35 |
g_cpu = torch.Generator("cuda").manual_seed(seed)
|
36 |
ecodiff_image = pruned_pipe(prompt=prompt, generator=g_cpu, num_inference_steps=steps).images[0]
|
37 |
+
return ecodiff_image
|
38 |
|
39 |
|
40 |
examples = [
|
|
|
54 |
|
55 |
header = """
|
56 |
# 🌱 EcoDiff Pruned FLUX-Schnell (20% Pruning Ratio)
|
57 |
+
|
58 |
+
We are not able to host two FLUX models in the same space, so we only show the pruned model here.
|
59 |
"""
|
60 |
|
61 |
header_2 = """
|
|
|
95 |
inputs=[prompt],
|
96 |
)
|
97 |
with gr.Row():
|
98 |
+
# original_output = gr.Image(label="Original Output")
|
99 |
ecodiff_output = gr.Image(label="EcoDiff Output")
|
100 |
gr.on(
|
101 |
triggers=[generate_btn.click, prompt.submit],
|
|
|
105 |
seed,
|
106 |
steps,
|
107 |
],
|
108 |
+
outputs=[ecodiff_output],
|
109 |
)
|
110 |
|
111 |
if __name__ == "__main__":
|