VQAScore / app2.py
zhiqiulin's picture
Rename app.py to app2.py
127f381 verified
raw
history blame
5.48 kB
# Imports
import gradio as gr
import os
import random
import time
import spaces
import torch
import threading
import socket
import requests
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Variables
HF_TOKEN = os.environ.get("HF_TOKEN")
REPO = "FUGG-B22x8-2-MLdraziW/ihanaPrayizaM"[::-1]
FILE = "WizardLM-2-8x22B.IQ1_M.gguf"
TIMEOUT = 30
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_SYSTEM = "Statical is a totally normal human named 'Statical'. Statical responds very briefly, truthfully, and accurately."
TAG_USER = "USER"
TAG_ASSISTANT = "STATICAL"
DEFAULT_SEPARATOR = ","
DEFAULT_STOP_SEQUENCES = f"{TAG_USER}:,{TAG_ASSISTANT}:,</s>"
model = Llama(model_path=hf_hub_download(repo_id=REPO, filename=FILE, token=HF_TOKEN), n_ctx=32768, n_threads=48, n_batch=512, n_gpu_layers=0, verbose=True)
# Functions
def get_seed(seed):
seed = seed.strip()
if seed.isdigit():
return int(seed)
else:
return random.randint(0, MAX_SEED)
def generate(input=DEFAULT_INPUT, history=[], system=DEFAULT_SYSTEM, stream=False, temperature=1, top_p=0.95, top_k=50, rep_p=1.2, max_tokens=64, seed=None, separator=DEFAULT_SEPARATOR, stop_sequences=DEFAULT_STOP_SEQUENCES):
print("[GENERATE] Model is generating...")
memory = ""
for item in history:
if item[0]:
memory += f"{TAG_USER}: {item[0].strip()}\n"
if item[1]:
memory += f"{TAG_ASSISTANT}: {item[1].strip()}</s>\n"
prompt = f"{system.strip()}\n{memory}{TAG_USER}: {input.strip()}\n{TAG_ASSISTANT}: "
print(prompt)
parameters = {
"prompt": prompt,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repeat_penalty": rep_p,
"max_tokens": max_tokens,
"stop": [seq.strip() for seq in stop_sequences.split(separator)] if stop_sequences else [],
"seed": get_seed(seed),
"stream": stream
}
event = threading.Event()
try:
output = model.create_completion(**parameters)
print("[GENERATE] Model has generated.")
if stream:
buffer = ""
timer = threading.Timer(TIMEOUT, event.set)
timer.start()
try:
for _, item in enumerate(output):
if event.is_set():
raise TimeoutError("[ERROR] Generation timed out.")
buffer += item["choices"][0]["text"]
yield buffer
timer.cancel()
timer = threading.Timer(TIMEOUT, event.set)
timer.start()
finally:
timer.cancel()
else:
yield output["choices"][0]["text"]
except TimeoutError as e:
yield str(e)
finally:
timer.cancel()
@spaces.GPU(duration=15)
def gpu():
return
# Initialize
theme = gr.themes.Default(
primary_hue="violet",
secondary_hue="indigo",
neutral_hue="zinc",
spacing_size="sm",
radius_size="lg",
font=[gr.themes.GoogleFont('Kanit'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('Kanit'), 'ui-monospace', 'Consolas', 'monospace'],
).set(background_fill_primary='*neutral_50', background_fill_secondary='*neutral_100')
model_base = "https://huggingface.co/MaziyarPanahi/WizardLM-2-8x22B-GGUF" # [::-1]
model_quant = "https://huggingface.co/alpindale/WizardLM-2-8x22B" # [::-1]
with gr.Blocks(theme=theme) as main:
with gr.Column():
gr.Markdown("# πŸ‘οΈβ€πŸ—¨οΈ WizardLM")
gr.Markdown("β €β €β€’ ⚑ A text generation inference for one of the best open-source text models: WizardLM-2-8x22B.")
gr.Markdown("β €β €β€’ ⚠️ WARNING! The inference is very slow due to the model being HUGE; it takes 10 seconds before it starts generating; please avoid high max token parameters and sending large amounts of text; note it uses CPU because I cannot figure out how to run it in GPU without overloading the model.")
gr.Markdown(f"β €β €β€’ πŸ”— Link to models: {model_base} (BASE), {model_quant} (QUANT)")
with gr.Column():
gr.ChatInterface(
fn=generate,
additional_inputs_accordion=gr.Accordion(label="βš™οΈ Configurations", open=False, render=False),
additional_inputs=[
gr.Textbox(lines=1, value=DEFAULT_SYSTEM, label="πŸͺ„ System", render=False),
gr.Checkbox(label="⚑ Stream", value=True, render=False),
gr.Slider(minimum=0, maximum=2, step=0.01, value=1, label="🌑️ Temperature", render=False),
gr.Slider(minimum=0.01, maximum=0.99, step=0.01, value=0.95, label="🧲 Top P", render=False),
gr.Slider(minimum=1, maximum=2048, step=1, value=50, label="πŸ“Š Top K", render=False),
gr.Slider(minimum=0.01, maximum=2, step=0.01, value=1.2, label="πŸ“š Repetition Penalty", render=False),
gr.Slider(minimum=1, maximum=2048, step=1, value=256, label="⏳ Max New Tokens", render=False),
gr.Textbox(lines=1, value="", label="🌱 Seed (Blank for random)", render=False),
gr.Textbox(lines=1, value=DEFAULT_SEPARATOR, label="🏷️ Stop Sequences Separator", render=False),
gr.Textbox(lines=1, value=DEFAULT_STOP_SEQUENCES, label="πŸ›‘ Stop Sequences (Blank for none)", render=False),
]
)
main.launch(show_api=False)