Spaces:
Running
on
Zero
Running
on
Zero
# Imports | |
import gradio as gr | |
import os | |
import random | |
import time | |
import spaces | |
import torch | |
import threading | |
import socket | |
import requests | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
# Variables | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
REPO = "FUGG-B22x8-2-MLdraziW/ihanaPrayizaM"[::-1] | |
FILE = "WizardLM-2-8x22B.IQ1_M.gguf" | |
TIMEOUT = 30 | |
MAX_SEED = 9007199254740991 | |
DEFAULT_INPUT = "" | |
DEFAULT_SYSTEM = "Statical is a totally normal human named 'Statical'. Statical responds very briefly, truthfully, and accurately." | |
TAG_USER = "USER" | |
TAG_ASSISTANT = "STATICAL" | |
DEFAULT_SEPARATOR = "," | |
DEFAULT_STOP_SEQUENCES = f"{TAG_USER}:,{TAG_ASSISTANT}:,</s>" | |
model = Llama(model_path=hf_hub_download(repo_id=REPO, filename=FILE, token=HF_TOKEN), n_ctx=32768, n_threads=48, n_batch=512, n_gpu_layers=0, verbose=True) | |
# Functions | |
def get_seed(seed): | |
seed = seed.strip() | |
if seed.isdigit(): | |
return int(seed) | |
else: | |
return random.randint(0, MAX_SEED) | |
def generate(input=DEFAULT_INPUT, history=[], system=DEFAULT_SYSTEM, stream=False, temperature=1, top_p=0.95, top_k=50, rep_p=1.2, max_tokens=64, seed=None, separator=DEFAULT_SEPARATOR, stop_sequences=DEFAULT_STOP_SEQUENCES): | |
print("[GENERATE] Model is generating...") | |
memory = "" | |
for item in history: | |
if item[0]: | |
memory += f"{TAG_USER}: {item[0].strip()}\n" | |
if item[1]: | |
memory += f"{TAG_ASSISTANT}: {item[1].strip()}</s>\n" | |
prompt = f"{system.strip()}\n{memory}{TAG_USER}: {input.strip()}\n{TAG_ASSISTANT}: " | |
print(prompt) | |
parameters = { | |
"prompt": prompt, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repeat_penalty": rep_p, | |
"max_tokens": max_tokens, | |
"stop": [seq.strip() for seq in stop_sequences.split(separator)] if stop_sequences else [], | |
"seed": get_seed(seed), | |
"stream": stream | |
} | |
event = threading.Event() | |
try: | |
output = model.create_completion(**parameters) | |
print("[GENERATE] Model has generated.") | |
if stream: | |
buffer = "" | |
timer = threading.Timer(TIMEOUT, event.set) | |
timer.start() | |
try: | |
for _, item in enumerate(output): | |
if event.is_set(): | |
raise TimeoutError("[ERROR] Generation timed out.") | |
buffer += item["choices"][0]["text"] | |
yield buffer | |
timer.cancel() | |
timer = threading.Timer(TIMEOUT, event.set) | |
timer.start() | |
finally: | |
timer.cancel() | |
else: | |
yield output["choices"][0]["text"] | |
except TimeoutError as e: | |
yield str(e) | |
finally: | |
timer.cancel() | |
def gpu(): | |
return | |
# Initialize | |
theme = gr.themes.Default( | |
primary_hue="violet", | |
secondary_hue="indigo", | |
neutral_hue="zinc", | |
spacing_size="sm", | |
radius_size="lg", | |
font=[gr.themes.GoogleFont('Kanit'), 'ui-sans-serif', 'system-ui', 'sans-serif'], | |
font_mono=[gr.themes.GoogleFont('Kanit'), 'ui-monospace', 'Consolas', 'monospace'], | |
).set(background_fill_primary='*neutral_50', background_fill_secondary='*neutral_100') | |
model_base = "https://huggingface.co/MaziyarPanahi/WizardLM-2-8x22B-GGUF" # [::-1] | |
model_quant = "https://huggingface.co/alpindale/WizardLM-2-8x22B" # [::-1] | |
with gr.Blocks(theme=theme) as main: | |
with gr.Column(): | |
gr.Markdown("# ποΈβπ¨οΈ WizardLM") | |
gr.Markdown("β β β’ β‘ A text generation inference for one of the best open-source text models: WizardLM-2-8x22B.") | |
gr.Markdown("β β β’ β οΈ WARNING! The inference is very slow due to the model being HUGE; it takes 10 seconds before it starts generating; please avoid high max token parameters and sending large amounts of text; note it uses CPU because I cannot figure out how to run it in GPU without overloading the model.") | |
gr.Markdown(f"β β β’ π Link to models: {model_base} (BASE), {model_quant} (QUANT)") | |
with gr.Column(): | |
gr.ChatInterface( | |
fn=generate, | |
additional_inputs_accordion=gr.Accordion(label="βοΈ Configurations", open=False, render=False), | |
additional_inputs=[ | |
gr.Textbox(lines=1, value=DEFAULT_SYSTEM, label="πͺ System", render=False), | |
gr.Checkbox(label="β‘ Stream", value=True, render=False), | |
gr.Slider(minimum=0, maximum=2, step=0.01, value=1, label="π‘οΈ Temperature", render=False), | |
gr.Slider(minimum=0.01, maximum=0.99, step=0.01, value=0.95, label="𧲠Top P", render=False), | |
gr.Slider(minimum=1, maximum=2048, step=1, value=50, label="π Top K", render=False), | |
gr.Slider(minimum=0.01, maximum=2, step=0.01, value=1.2, label="π Repetition Penalty", render=False), | |
gr.Slider(minimum=1, maximum=2048, step=1, value=256, label="β³ Max New Tokens", render=False), | |
gr.Textbox(lines=1, value="", label="π± Seed (Blank for random)", render=False), | |
gr.Textbox(lines=1, value=DEFAULT_SEPARATOR, label="π·οΈ Stop Sequences Separator", render=False), | |
gr.Textbox(lines=1, value=DEFAULT_STOP_SEQUENCES, label="π Stop Sequences (Blank for none)", render=False), | |
] | |
) | |
main.launch(show_api=False) |