zihaoz96's picture
update
3f3da6d
raw
history blame
1.21 kB
import gradio as gr
import numpy as np
import pandas as pd
from tensorflow.keras import models
import tensorflow as tf
# open categories.txt in read mode
categories = open("categories.txt", "r")
labels = categories.readline().split(";")
model = models.load_model('models/modelnet/best_model.h5')
def predict_image(image):
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
pred = model.predict(image)
acc = dict((labels[i], "%.2f" % pred[0][i]) for i in range(len(labels)))
print(acc)
return acc
image = gr.inputs.Image(shape=(224, 224), label="Upload Your Image Here")
label = gr.outputs.Label(num_top_classes=len(labels))
samples = ['samples/basking.jpg', 'samples/blacktip.jpg', 'samples/blue.jpg', 'samples/bull.jpg', 'samples/hammerhead.jpg',
'samples/lemon.jpg', 'samples/mako.jpg', 'samples/nurse.jpg', 'samples/sand tiger.jpg', 'samples/thresher.jpg',
'samples/tigre.jpg', 'samples/whale.jpg', 'samples/white.jpg', 'samples/whitetip.jpg']
interface = gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
capture_session=True,
allow_flagging=False,
examples=samples
)
interface.launch()