zihaoz96 commited on
Commit
42fa709
·
1 Parent(s): b9f412e
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,37 +0,0 @@
1
- ---
2
- title: Shark Classifier Mobilenet_v2
3
- emoji: 🦈
4
- colorFrom: indigo
5
- colorTo: green
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: false
9
- ---
10
-
11
- # Configuration
12
-
13
- `title`: _string_
14
- Display title for the Space
15
-
16
- `emoji`: _string_
17
- Space emoji (emoji-only character allowed)
18
-
19
- `colorFrom`: _string_
20
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
-
22
- `colorTo`: _string_
23
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
-
25
- `sdk`: _string_
26
- Can be either `gradio` or `streamlit`
27
-
28
- `sdk_version` : _string_
29
- Only applicable for `streamlit` SDK.
30
- See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
31
-
32
- `app_file`: _string_
33
- Path to your main application file (which contains either `gradio` or `streamlit` Python code).
34
- Path is relative to the root of the repository.
35
-
36
- `pinned`: _boolean_
37
- Whether the Space stays on top of your list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py DELETED
@@ -1,41 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import pandas as pd
4
- from tensorflow.keras import models
5
-
6
- import tensorflow as tf
7
-
8
- # open categories.txt in read mode
9
- categories = open("categories.txt", "r")
10
- labels = categories.readline().split(";")
11
-
12
- model = models.load_model('models/modelnet/best_model.h5')
13
-
14
-
15
- def predict_image(image):
16
- image = np.array(image) / 255
17
- image = np.expand_dims(image, axis=0)
18
-
19
- pred = model.predict(image)
20
-
21
- acc = dict((labels[i], "%.2f" % pred[0][i]) for i in range(len(labels)))
22
- print(acc)
23
- return acc
24
-
25
-
26
- image = gr.inputs.Image(shape=(224, 224), label="Upload Your Image Here")
27
- label = gr.outputs.Label(num_top_classes=len(labels))
28
-
29
- samples = ['samples/basking.jpg', 'samples/blacktip.jpg', 'samples/blue.jpg', 'samples/bull.jpg', 'samples/hammerhead.jpg',
30
- 'samples/lemon.jpg', 'samples/mako.jpg', 'samples/nurse.jpg', 'samples/sand tiger.jpg', 'samples/thresher.jpg',
31
- 'samples/tigre.jpg', 'samples/whale.jpg', 'samples/white.jpg', 'samples/whitetip.jpg']
32
-
33
- interface = gr.Interface(
34
- fn=predict_image,
35
- inputs=image,
36
- outputs=label,
37
- capture_session=True,
38
- allow_flagging=False,
39
- examples=samples
40
- )
41
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
categories.txt DELETED
@@ -1 +0,0 @@
1
- basking;blacktip;blue;bull;hammerhead;lemon;mako;nurse;sand tiger;thresher;tiger;whale;white;whitetip
 
 
models/VGG16.py DELETED
@@ -1,34 +0,0 @@
1
- import tensorflow as tf
2
- from tensorflow.keras.callbacks import TensorBoard, EarlyStopping, ModelCheckpoint
3
- from tensorflow.keras.layers import Conv2D, Dense, Flatten, GlobalMaxPooling2D
4
- from tensorflow.keras.layers import Dense, Input, MaxPooling2D
5
- from tensorflow.keras import Model
6
-
7
-
8
- def VGG16(nbr_class):
9
- # 224 224 3
10
- img_input = Input(shape=(224,224,3))
11
-
12
- # first convolution
13
- x = Conv2D(64, (3,3), activation='relu', padding='same')(img_input)
14
- x = Conv2D(64, (3,3), activation='relu', padding='same')(x)
15
- x = MaxPooling2D((2,2), strides = (2,2))(x)
16
-
17
- # second convolution
18
- x = Conv2D(128, (3,3), activation='relu', padding='same')(x)
19
- x = Conv2D(128, (3,3), activation='relu', padding='same')(x)
20
- x = MaxPooling2D((2,2), strides = (2,2))(x)
21
-
22
- # third convolution
23
- x = Conv2D(256, (3,3), activation='relu', padding='same')(x)
24
- x = Conv2D(256, (3,3), activation='relu', padding='same')(x)
25
- x = Conv2D(256, (3,3), activation='relu', padding='same')(x)
26
- x = MaxPooling2D((2,2), strides = (2,2))(x)
27
-
28
- x = Flatten()(x)
29
- x = Dense(1024, activation='relu')(x)
30
- x = Dense(1024, activation='relu')(x)
31
- x = Dense(nbr_class, activation='softmax')(x)
32
-
33
-
34
- return Model(img_input, x, name="vgg16")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/modelNet.py DELETED
@@ -1,19 +0,0 @@
1
-
2
- import tensorflow as tf
3
- from tensorflow.keras.callbacks import TensorBoard, EarlyStopping, ModelCheckpoint
4
- from tensorflow.keras.layers import Conv2D, Dense, GlobalMaxPooling2D
5
- from tensorflow.keras.layers import Dense, MaxPooling2D, BatchNormalization
6
- from tensorflow.keras.models import Sequential
7
- from tensorflow.keras import Model
8
-
9
-
10
- def modelNet(nbr_class):
11
- mobile_net = tf.keras.applications.MobileNetV2(input_shape=(224,224,3), include_top=False)
12
- mobile_net.trainable=False
13
-
14
- model = Sequential([
15
- mobile_net,
16
- tf.keras.layers.GlobalAveragePooling2D(),
17
- tf.keras.layers.Dense(nbr_class, activation = 'softmax')])
18
-
19
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/model_v1.py DELETED
@@ -1,47 +0,0 @@
1
-
2
- import tensorflow as tf
3
- from tensorflow.keras.callbacks import TensorBoard, EarlyStopping, ModelCheckpoint
4
- from tensorflow.keras.layers import Conv2D, Dense, GlobalMaxPooling2D
5
- from tensorflow.keras.layers import Dense, MaxPooling2D, BatchNormalization
6
- from tensorflow.keras.models import Sequential
7
- from tensorflow.keras import Model
8
-
9
- def model_v1(nbr_class):
10
- model = Sequential()
11
- model.add(Conv2D(64,(3,3), activation="relu", input_shape=(224,224,3)))
12
- model.add(BatchNormalization())
13
- model.add(Conv2D(64,(3,3), activation="relu"))
14
- model.add(BatchNormalization())
15
- model.add(MaxPooling2D())
16
-
17
- model.add(Conv2D(128,(3,3), activation="relu"))
18
- model.add(BatchNormalization())
19
- model.add(Conv2D(128,(3,3), activation="relu"))
20
- model.add(BatchNormalization())
21
- model.add(MaxPooling2D())
22
-
23
- model.add(Conv2D(256,(3,3), activation="relu"))
24
- model.add(BatchNormalization())
25
- model.add(Conv2D(256,(3,3), activation="relu"))
26
- model.add(BatchNormalization())
27
- model.add(MaxPooling2D())
28
-
29
- # model.add(Conv2D(512,(3,3), activation="relu"))
30
- # model.add(BatchNormalization())
31
- # model.add(Conv2D(512,(3,3), activation="relu"))
32
- # model.add(BatchNormalization())
33
- # model.add(MaxPooling2D())
34
-
35
- # model.add(Conv2D(512,(3,3), activation="relu"))
36
- # model.add(BatchNormalization())
37
- # model.add(Conv2D(512,(3,3), activation="relu"))
38
- # model.add(BatchNormalization())
39
- # model.add(Conv2D(512,(3,3), activation="relu"))
40
- # model.add(BatchNormalization())
41
- # model.add(GlobalMaxPooling2D())
42
-
43
- model.add(Dense(1024, activation="relu"))
44
- model.add(BatchNormalization())
45
- model.add(Dense(nbr_class, activation="softmax"))
46
-
47
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/{mobilenet_v2/best_model.pth → modelnet/best_model.h5} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:650c8c31d438caf26c768908e204a0fd8ee48af3f22d157e6eb88237dc103828
3
- size 9235021
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7c1ec8dba0efbf87bd07ad89555987bd7be807efbc77d42cab2d0c75a45d6a0
3
+ size 9556672
requirements.txt DELETED
@@ -1,13 +0,0 @@
1
- gradio
2
- torch
3
- torchvision
4
- Pillow
5
- gdown
6
- numpy
7
- scipy
8
- cmake
9
- onnxruntime-gpu
10
- opencv-python-headless
11
- encoded-video
12
- hugsvision
13
- tensorflow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
samples/basking.jpg DELETED
Binary file (2.86 MB)
 
samples/blacktip.jpg DELETED
Binary file (24.3 kB)
 
samples/blue.jpg DELETED
Binary file (4.01 MB)
 
samples/bull.jpg DELETED
Binary file (3.31 MB)
 
samples/hammerhead.jpg DELETED
Binary file (103 kB)
 
samples/lemon.jpg DELETED
Binary file (553 kB)
 
samples/mako.jpg DELETED
Binary file (37.2 kB)
 
samples/nurse.jpg DELETED
Binary file (37.1 kB)
 
samples/sand tiger.jpg DELETED
Binary file (128 kB)
 
samples/thresher.jpg DELETED
Binary file (126 kB)
 
samples/tigre.jpg DELETED
Binary file (44.9 kB)
 
samples/whale.jpg DELETED
Binary file (222 kB)
 
samples/white.jpg DELETED
Binary file (209 kB)
 
samples/whitetip.jpg DELETED
Binary file (41.4 kB)