SayaSS commited on
Commit
4b5c6f0
·
1 Parent(s): c17721a
app.py CHANGED
@@ -1,9 +1,8 @@
1
- import io
2
  import os
3
  import gradio as gr
4
  import librosa
5
  import numpy as np
6
- import soundfile
7
  from inference.infer_tool import Svc
8
  import logging
9
  import webbrowser
@@ -40,6 +39,7 @@ def create_vc_fn(model, sid):
40
  if sampling_rate != 44100:
41
  audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=44100)
42
  out_audio, out_sr = model.infer(sid, vc_transform, audio, auto_predict_f0=auto_f0)
 
43
  return "Success", (44100, out_audio.cpu().numpy())
44
  return vc_fn
45
 
@@ -50,11 +50,11 @@ if __name__ == '__main__':
50
  parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
51
  parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
52
  args = parser.parse_args()
53
-
54
  models = []
55
  for f in os.listdir("models"):
56
  name = f
57
- model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device)
58
  cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
59
  models.append((name, cover, create_vc_fn(model, name)))
60
  with gr.Blocks() as app:
 
 
1
  import os
2
  import gradio as gr
3
  import librosa
4
  import numpy as np
5
+ import utils
6
  from inference.infer_tool import Svc
7
  import logging
8
  import webbrowser
 
39
  if sampling_rate != 44100:
40
  audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=44100)
41
  out_audio, out_sr = model.infer(sid, vc_transform, audio, auto_predict_f0=auto_f0)
42
+ model.clear_empty()
43
  return "Success", (44100, out_audio.cpu().numpy())
44
  return vc_fn
45
 
 
50
  parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
51
  parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
52
  args = parser.parse_args()
53
+ hubert_model = utils.get_hubert_model().to(args.device)
54
  models = []
55
  for f in os.listdir("models"):
56
  name = f
57
+ model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
58
  cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
59
  models.append((name, cover, create_vc_fn(model, name)))
60
  with gr.Blocks() as app:
inference/__pycache__/infer_tool.cpython-38.pyc CHANGED
Binary files a/inference/__pycache__/infer_tool.cpython-38.pyc and b/inference/__pycache__/infer_tool.cpython-38.pyc differ
 
inference/infer_tool.py CHANGED
@@ -109,7 +109,7 @@ def split_list_by_n(list_collection, n, pre=0):
109
 
110
 
111
  class Svc(object):
112
- def __init__(self, net_g_path, config_path,
113
  device=None,
114
  cluster_model_path="logs/44k/kmeans_10000.pt"):
115
  self.net_g_path = net_g_path
@@ -123,7 +123,7 @@ class Svc(object):
123
  self.hop_size = self.hps_ms.data.hop_length
124
  self.spk2id = self.hps_ms.spk
125
  # 加载hubert
126
- self.hubert_model = utils.get_hubert_model().to(self.dev)
127
  self.load_model()
128
  if os.path.exists(cluster_model_path):
129
  self.cluster_model = cluster.get_cluster_model(cluster_model_path)
 
109
 
110
 
111
  class Svc(object):
112
+ def __init__(self, net_g_path, config_path, hubert_model,
113
  device=None,
114
  cluster_model_path="logs/44k/kmeans_10000.pt"):
115
  self.net_g_path = net_g_path
 
123
  self.hop_size = self.hps_ms.data.hop_length
124
  self.spk2id = self.hps_ms.spk
125
  # 加载hubert
126
+ self.hubert_model = hubert_model
127
  self.load_model()
128
  if os.path.exists(cluster_model_path):
129
  self.cluster_model = cluster.get_cluster_model(cluster_model_path)
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
  Flask
2
  Flask_Cors
3
- gradio
4
  numpy
5
  playsound
6
  pydub
 
1
  Flask
2
  Flask_Cors
3
+ gradio==3.18.0
4
  numpy
5
  playsound
6
  pydub
utils.py CHANGED
@@ -244,7 +244,6 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False
244
  model.module.load_state_dict(new_state_dict)
245
  else:
246
  model.load_state_dict(new_state_dict)
247
- print("load ")
248
  logger.info("Loaded checkpoint '{}' (iteration {})".format(
249
  checkpoint_path, iteration))
250
  return model, optimizer, learning_rate, iteration
 
244
  model.module.load_state_dict(new_state_dict)
245
  else:
246
  model.load_state_dict(new_state_dict)
 
247
  logger.info("Loaded checkpoint '{}' (iteration {})".format(
248
  checkpoint_path, iteration))
249
  return model, optimizer, learning_rate, iteration