Spaces:
Configuration error
Configuration error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import hashlib
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from threading import Thread
|
7 |
+
import logging
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from tinyllava.model.builder import load_pretrained_model
|
12 |
+
from tinyllava.mm_utils import (
|
13 |
+
KeywordsStoppingCriteria,
|
14 |
+
load_image_from_base64,
|
15 |
+
process_images,
|
16 |
+
tokenizer_image_token,
|
17 |
+
get_model_name_from_path,
|
18 |
+
)
|
19 |
+
from PIL import Image
|
20 |
+
from io import BytesIO
|
21 |
+
import base64
|
22 |
+
import torch
|
23 |
+
from transformers import StoppingCriteria
|
24 |
+
from tinyllava.constants import (
|
25 |
+
DEFAULT_IM_END_TOKEN,
|
26 |
+
DEFAULT_IM_START_TOKEN,
|
27 |
+
DEFAULT_IMAGE_TOKEN,
|
28 |
+
IMAGE_TOKEN_INDEX,
|
29 |
+
)
|
30 |
+
from tinyllava.conversation import SeparatorStyle, conv_templates, default_conversation
|
31 |
+
|
32 |
+
from transformers import TextIteratorStreamer
|
33 |
+
from pathlib import Path
|
34 |
+
|
35 |
+
DEFAULT_MODEL_PATH = "bczhou/TinyLLaVA-3.1B"
|
36 |
+
DEFAULT_MODEL_NAME = "TinyLLaVA-3.1B"
|
37 |
+
|
38 |
+
|
39 |
+
block_css = """
|
40 |
+
|
41 |
+
#buttons button {
|
42 |
+
min-width: min(120px,100%);
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
title_markdown = """
|
46 |
+
# TinyLLaVA: A Framework of Small-scale Large Multimodal Models
|
47 |
+
[[Code](https://github.com/DLCV-BUAA/TinyLLaVABench)] | 📚 [[Paper](https://arxiv.org/pdf/2402.14289.pdf)]
|
48 |
+
"""
|
49 |
+
tos_markdown = """
|
50 |
+
### Terms of use
|
51 |
+
By using this service, users are required to agree to the following terms:
|
52 |
+
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
|
53 |
+
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
|
54 |
+
"""
|
55 |
+
learn_more_markdown = """
|
56 |
+
### License
|
57 |
+
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
58 |
+
"""
|
59 |
+
ack_markdown = """
|
60 |
+
### Acknowledgement
|
61 |
+
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community!
|
62 |
+
"""
|
63 |
+
|
64 |
+
|
65 |
+
def regenerate(state, image_process_mode):
|
66 |
+
state.messages[-1][-1] = None
|
67 |
+
prev_human_msg = state.messages[-2]
|
68 |
+
if type(prev_human_msg[1]) in (tuple, list):
|
69 |
+
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
70 |
+
state.skip_next = False
|
71 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
72 |
+
|
73 |
+
|
74 |
+
def clear_history():
|
75 |
+
state = default_conversation.copy()
|
76 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
77 |
+
|
78 |
+
|
79 |
+
def add_text(state, text, image, image_process_mode):
|
80 |
+
if len(text) <= 0 and image is None:
|
81 |
+
state.skip_next = True
|
82 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
83 |
+
|
84 |
+
text = text[:1536] # Hard cut-off
|
85 |
+
if image is not None:
|
86 |
+
text = text[:1200] # Hard cut-off for images
|
87 |
+
if "<image>" not in text:
|
88 |
+
# text = '<Image><image></Image>' + text
|
89 |
+
text = text + "\n<image>"
|
90 |
+
text = (text, image, image_process_mode)
|
91 |
+
if len(state.get_images(return_pil=True)) > 0:
|
92 |
+
state = default_conversation.copy()
|
93 |
+
state.append_message(state.roles[0], text)
|
94 |
+
state.append_message(state.roles[1], None)
|
95 |
+
state.skip_next = False
|
96 |
+
return (state, state.to_gradio_chatbot(), "", None)
|
97 |
+
|
98 |
+
|
99 |
+
def load_demo():
|
100 |
+
state = default_conversation.copy()
|
101 |
+
return state
|
102 |
+
|
103 |
+
|
104 |
+
@torch.inference_mode()
|
105 |
+
def get_response(params):
|
106 |
+
prompt = params["prompt"]
|
107 |
+
ori_prompt = prompt
|
108 |
+
images = params.get("images", None)
|
109 |
+
num_image_tokens = 0
|
110 |
+
if images is not None and len(images) > 0:
|
111 |
+
if len(images) > 0:
|
112 |
+
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
113 |
+
raise ValueError(
|
114 |
+
"Number of images does not match number of <image> tokens in prompt"
|
115 |
+
)
|
116 |
+
|
117 |
+
images = [load_image_from_base64(image) for image in images]
|
118 |
+
images = process_images(images, image_processor, model.config)
|
119 |
+
|
120 |
+
if type(images) is list:
|
121 |
+
images = [
|
122 |
+
image.to(model.device, dtype=torch.float16) for image in images
|
123 |
+
]
|
124 |
+
else:
|
125 |
+
images = images.to(model.device, dtype=torch.float16)
|
126 |
+
|
127 |
+
replace_token = DEFAULT_IMAGE_TOKEN
|
128 |
+
if getattr(model.config, "mm_use_im_start_end", False):
|
129 |
+
replace_token = (
|
130 |
+
DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
131 |
+
)
|
132 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
133 |
+
|
134 |
+
num_image_tokens = (
|
135 |
+
prompt.count(replace_token) * model.get_vision_tower().num_patches
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
images = None
|
139 |
+
image_args = {"images": images}
|
140 |
+
else:
|
141 |
+
images = None
|
142 |
+
image_args = {}
|
143 |
+
|
144 |
+
temperature = float(params.get("temperature", 1.0))
|
145 |
+
top_p = float(params.get("top_p", 1.0))
|
146 |
+
max_context_length = getattr(model.config, "max_position_embeddings", 2048)
|
147 |
+
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
148 |
+
stop_str = params.get("stop", None)
|
149 |
+
do_sample = True if temperature > 0.001 else False
|
150 |
+
logger.info(prompt)
|
151 |
+
input_ids = (
|
152 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
153 |
+
.unsqueeze(0)
|
154 |
+
.to(model.device)
|
155 |
+
)
|
156 |
+
keywords = [stop_str]
|
157 |
+
|
158 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
159 |
+
streamer = TextIteratorStreamer(
|
160 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15
|
161 |
+
)
|
162 |
+
|
163 |
+
max_new_tokens = min(
|
164 |
+
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens
|
165 |
+
)
|
166 |
+
|
167 |
+
if max_new_tokens < 1:
|
168 |
+
yield json.dumps(
|
169 |
+
{
|
170 |
+
"text": ori_prompt
|
171 |
+
+ "Exceeds max token length. Please start a new conversation, thanks.",
|
172 |
+
"error_code": 0,
|
173 |
+
}
|
174 |
+
).encode() + b"\0"
|
175 |
+
return
|
176 |
+
|
177 |
+
# local inference
|
178 |
+
# BUG: If stopping_criteria is set, an error occur:
|
179 |
+
# RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 0
|
180 |
+
generate_kwargs = dict(
|
181 |
+
inputs=input_ids,
|
182 |
+
do_sample=do_sample,
|
183 |
+
temperature=temperature,
|
184 |
+
top_p=top_p,
|
185 |
+
max_new_tokens=max_new_tokens,
|
186 |
+
streamer=streamer,
|
187 |
+
# stopping_criteria=[stopping_criteria],
|
188 |
+
use_cache=True,
|
189 |
+
**image_args,
|
190 |
+
)
|
191 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
192 |
+
thread.start()
|
193 |
+
logger.debug(ori_prompt)
|
194 |
+
logger.debug(generate_kwargs)
|
195 |
+
generated_text = ori_prompt
|
196 |
+
for new_text in streamer:
|
197 |
+
generated_text += new_text
|
198 |
+
if generated_text.endswith(stop_str):
|
199 |
+
generated_text = generated_text[: -len(stop_str)]
|
200 |
+
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
|
201 |
+
|
202 |
+
|
203 |
+
def http_bot(state, temperature, top_p, max_new_tokens):
|
204 |
+
if state.skip_next:
|
205 |
+
# This generate call is skipped due to invalid inputs
|
206 |
+
yield (state, state.to_gradio_chatbot())
|
207 |
+
return
|
208 |
+
|
209 |
+
if len(state.messages) == state.offset + 2:
|
210 |
+
# First round of conversation
|
211 |
+
|
212 |
+
if "tinyllava" in model_name.lower():
|
213 |
+
if "3.1b" in model_name.lower() or "phi" in model_name.lower():
|
214 |
+
template_name = "phi"
|
215 |
+
elif "2.0b" in model_name.lower() or "stablelm" in model_name.lower():
|
216 |
+
template_name = "phi"
|
217 |
+
elif "qwen" in model_name.lower():
|
218 |
+
template_name = "qwen"
|
219 |
+
else:
|
220 |
+
template_name = "v1"
|
221 |
+
|
222 |
+
elif "llava" in model_name.lower():
|
223 |
+
|
224 |
+
if "llama-2" in model_name.lower():
|
225 |
+
template_name = "llava_llama_2"
|
226 |
+
elif "v1" in model_name.lower():
|
227 |
+
if "mmtag" in model_name.lower():
|
228 |
+
template_name = "v1_mmtag"
|
229 |
+
elif (
|
230 |
+
"plain" in model_name.lower()
|
231 |
+
and "finetune" not in model_name.lower()
|
232 |
+
):
|
233 |
+
template_name = "v1_mmtag"
|
234 |
+
else:
|
235 |
+
template_name = "llava_v1"
|
236 |
+
elif "mpt" in model_name.lower():
|
237 |
+
template_name = "mpt"
|
238 |
+
else:
|
239 |
+
if "mmtag" in model_name.lower():
|
240 |
+
template_name = "v0_mmtag"
|
241 |
+
elif (
|
242 |
+
"plain" in model_name.lower()
|
243 |
+
and "finetune" not in model_name.lower()
|
244 |
+
):
|
245 |
+
template_name = "v0_mmtag"
|
246 |
+
else:
|
247 |
+
template_name = "llava_v0"
|
248 |
+
elif "mpt" in model_name:
|
249 |
+
template_name = "mpt_text"
|
250 |
+
elif "llama-2" in model_name:
|
251 |
+
template_name = "llama_2"
|
252 |
+
else:
|
253 |
+
template_name = "vicuna_v1"
|
254 |
+
new_state = conv_templates[template_name].copy()
|
255 |
+
new_state.append_message(new_state.roles[0], state.messages[-2][1])
|
256 |
+
new_state.append_message(new_state.roles[1], None)
|
257 |
+
state = new_state
|
258 |
+
|
259 |
+
# Construct prompt
|
260 |
+
prompt = state.get_prompt()
|
261 |
+
|
262 |
+
all_images = state.get_images(return_pil=True)
|
263 |
+
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
|
264 |
+
|
265 |
+
# Make requests
|
266 |
+
# pload = {"model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p),
|
267 |
+
# "max_new_tokens": min(int(max_new_tokens), 1536), "stop": (
|
268 |
+
# state.sep
|
269 |
+
# if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
|
270 |
+
# else state.sep2
|
271 |
+
# ), "images": state.get_images()}
|
272 |
+
|
273 |
+
pload = {
|
274 |
+
"model": model_name,
|
275 |
+
"prompt": prompt,
|
276 |
+
"temperature": float(temperature),
|
277 |
+
"top_p": float(top_p),
|
278 |
+
"max_new_tokens": min(int(max_new_tokens), 1536),
|
279 |
+
"stop": (
|
280 |
+
state.sep
|
281 |
+
if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
|
282 |
+
else state.sep2
|
283 |
+
), "images": state.get_images()}
|
284 |
+
|
285 |
+
state.messages[-1][-1] = "▌"
|
286 |
+
yield (state, state.to_gradio_chatbot())
|
287 |
+
|
288 |
+
# for stream
|
289 |
+
output = get_response(pload)
|
290 |
+
for chunk in output:
|
291 |
+
if chunk:
|
292 |
+
data = json.loads(chunk.decode())
|
293 |
+
if data["error_code"] == 0:
|
294 |
+
output = data["text"][len(prompt) :].strip()
|
295 |
+
state.messages[-1][-1] = output + "▌"
|
296 |
+
yield (state, state.to_gradio_chatbot())
|
297 |
+
else:
|
298 |
+
output = data["text"] + f" (error_code: {data['error_code']})"
|
299 |
+
state.messages[-1][-1] = output
|
300 |
+
yield (state, state.to_gradio_chatbot())
|
301 |
+
return
|
302 |
+
time.sleep(0.03)
|
303 |
+
|
304 |
+
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
305 |
+
yield (state, state.to_gradio_chatbot())
|
306 |
+
|
307 |
+
|
308 |
+
def build_demo():
|
309 |
+
textbox = gr.Textbox(
|
310 |
+
show_label=False, placeholder="Enter text and press ENTER", container=False
|
311 |
+
)
|
312 |
+
with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo:
|
313 |
+
state = gr.State()
|
314 |
+
gr.Markdown(title_markdown)
|
315 |
+
|
316 |
+
with gr.Row():
|
317 |
+
with gr.Column(scale=5):
|
318 |
+
with gr.Row(elem_id="Model ID"):
|
319 |
+
gr.Dropdown(
|
320 |
+
choices=[DEFAULT_MODEL_NAME],
|
321 |
+
value=DEFAULT_MODEL_NAME,
|
322 |
+
interactive=True,
|
323 |
+
label="Model ID",
|
324 |
+
container=False,
|
325 |
+
)
|
326 |
+
imagebox = gr.Image(type="pil")
|
327 |
+
image_process_mode = gr.Radio(
|
328 |
+
["Crop", "Resize", "Pad", "Default"],
|
329 |
+
value="Default",
|
330 |
+
label="Preprocess for non-square image",
|
331 |
+
visible=False,
|
332 |
+
)
|
333 |
+
|
334 |
+
# cur_dir = os.path.dirname(os.path.abspath(__file__))
|
335 |
+
cur_dir = Path(__file__).parent
|
336 |
+
gr.Examples(
|
337 |
+
examples=[
|
338 |
+
[
|
339 |
+
f"{cur_dir}/examples/extreme_ironing.jpg",
|
340 |
+
"What is unusual about this image?",
|
341 |
+
],
|
342 |
+
[
|
343 |
+
f"{cur_dir}/examples/waterview.jpg",
|
344 |
+
"What are the things I should be cautious about when I visit here?",
|
345 |
+
],
|
346 |
+
],
|
347 |
+
inputs=[imagebox, textbox],
|
348 |
+
)
|
349 |
+
|
350 |
+
with gr.Accordion("Parameters", open=False) as _:
|
351 |
+
temperature = gr.Slider(
|
352 |
+
minimum=0.0,
|
353 |
+
maximum=1.0,
|
354 |
+
value=0.2,
|
355 |
+
step=0.1,
|
356 |
+
interactive=True,
|
357 |
+
label="Temperature",
|
358 |
+
)
|
359 |
+
top_p = gr.Slider(
|
360 |
+
minimum=0.0,
|
361 |
+
maximum=1.0,
|
362 |
+
value=0.7,
|
363 |
+
step=0.1,
|
364 |
+
interactive=True,
|
365 |
+
label="Top P",
|
366 |
+
)
|
367 |
+
max_output_tokens = gr.Slider(
|
368 |
+
minimum=0,
|
369 |
+
maximum=1024,
|
370 |
+
value=512,
|
371 |
+
step=64,
|
372 |
+
interactive=True,
|
373 |
+
label="Max output tokens",
|
374 |
+
)
|
375 |
+
|
376 |
+
with gr.Column(scale=8):
|
377 |
+
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550)
|
378 |
+
with gr.Row():
|
379 |
+
with gr.Column(scale=8):
|
380 |
+
textbox.render()
|
381 |
+
with gr.Column(scale=1, min_width=50):
|
382 |
+
submit_btn = gr.Button(value="Send", variant="primary")
|
383 |
+
with gr.Row(elem_id="buttons") as _:
|
384 |
+
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
|
385 |
+
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
|
386 |
+
|
387 |
+
gr.Markdown(tos_markdown)
|
388 |
+
gr.Markdown(learn_more_markdown)
|
389 |
+
gr.Markdown(ack_markdown)
|
390 |
+
|
391 |
+
regenerate_btn.click(
|
392 |
+
regenerate,
|
393 |
+
[state, image_process_mode],
|
394 |
+
[state, chatbot, textbox, imagebox],
|
395 |
+
queue=False,
|
396 |
+
).then(
|
397 |
+
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
|
398 |
+
)
|
399 |
+
|
400 |
+
clear_btn.click(
|
401 |
+
clear_history, None, [state, chatbot, textbox, imagebox], queue=False
|
402 |
+
)
|
403 |
+
|
404 |
+
textbox.submit(
|
405 |
+
add_text,
|
406 |
+
[state, textbox, imagebox, image_process_mode],
|
407 |
+
[state, chatbot, textbox, imagebox],
|
408 |
+
queue=False,
|
409 |
+
).then(
|
410 |
+
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
|
411 |
+
)
|
412 |
+
|
413 |
+
submit_btn.click(
|
414 |
+
add_text,
|
415 |
+
[state, textbox, imagebox, image_process_mode],
|
416 |
+
[state, chatbot, textbox, imagebox],
|
417 |
+
queue=False,
|
418 |
+
).then(
|
419 |
+
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
|
420 |
+
)
|
421 |
+
|
422 |
+
demo.load(load_demo, None, [state], queue=False)
|
423 |
+
return demo
|
424 |
+
|
425 |
+
|
426 |
+
def parse_args():
|
427 |
+
parser = argparse.ArgumentParser()
|
428 |
+
parser.add_argument("--host", type=str, default=None)
|
429 |
+
parser.add_argument("--port", type=int, default=None)
|
430 |
+
parser.add_argument("--share", default=None)
|
431 |
+
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH)
|
432 |
+
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_NAME)
|
433 |
+
parser.add_argument("--load-8bit", action="store_true")
|
434 |
+
parser.add_argument("--load-4bit", action="store_true")
|
435 |
+
args = parser.parse_args()
|
436 |
+
return args
|
437 |
+
|
438 |
+
|
439 |
+
if __name__ == "__main__":
|
440 |
+
logging.basicConfig(
|
441 |
+
level=logging.INFO,
|
442 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
443 |
+
)
|
444 |
+
logger = logging.getLogger(__name__)
|
445 |
+
logger.info(gr.__version__)
|
446 |
+
args = parse_args()
|
447 |
+
model_name = args.model_name
|
448 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
449 |
+
model_path=args.model_path,
|
450 |
+
model_base=None,
|
451 |
+
model_name=args.model_name,
|
452 |
+
load_4bit=args.load_4bit,
|
453 |
+
load_8bit=args.load_8bit
|
454 |
+
)
|
455 |
+
|
456 |
+
demo = build_demo()
|
457 |
+
demo.queue()
|
458 |
+
demo.launch(server_name=args.host, server_port=args.port, share=args.share)
|