File size: 1,646 Bytes
3a24f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73108c
 
 
3a24f77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f73108c
 
 
 
3a24f77
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
license: apache-2.0
base_model: deepvk/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-spam-detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-spam-detection

This model is a fine-tuned version of [deepvk/bert-base-uncased](https://huggingface.co/deepvk/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0192
- Accuracy: 0.9958
- F1: 0.9957

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.0222        | 1.0   | 5685  | 0.0157          | 0.9956   | 0.9956 |
| 0.0087        | 2.0   | 11370 | 0.0192          | 0.9958   | 0.9957 |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.4.1
- Datasets 3.0.2
- Tokenizers 0.20.1