File size: 4,269 Bytes
63e5d51
 
 
 
7aa87e6
63e5d51
 
 
6980701
63e5d51
 
7aa87e6
63e5d51
 
 
 
f7339f8
 
63e5d51
 
 
 
 
bff7909
8d05a34
 
 
63e5d51
 
 
 
 
 
 
bff7909
56fc82e
63e5d51
56fc82e
bff7909
63e5d51
 
 
5eef440
 
 
63e5d51
 
 
 
 
ea23708
63e5d51
 
 
 
 
cd4def2
63e5d51
 
377746c
63e5d51
cd4def2
b6a1ae9
63e5d51
 
5d31c36
 
63e5d51
dc0130a
 
 
533c5da
 
 
 
 
 
 
 
1de18c1
533c5da
 
 
 
 
 
1de18c1
533c5da
 
 
 
e475a72
533c5da
ef2a1aa
 
 
bd44c94
 
 
 
 
 
f582b39
 
 
 
 
 
7663885
f582b39
 
 
 
7663885
 
f582b39
b4f8b6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
language: "it"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- common_voice
metrics:
- wer
- cer
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# CRDNN with CTC/Attention trained on CommonVoice Italian (No LM)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (IT) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).

The performance of the model is the following:

| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 07-03-21 | 5.40 | 16.61 | 2xV100 16GB |

## Pipeline description

This ASR system is composed of 2 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (IT).
- Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalization and pooling on the
frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
the final acoustic representation that is given to the CTC and attention decoders.

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Transcribing your own audio files (in Italian)

```python
from speechbrain.inference.ASR import EncoderDecoderASR

asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-it", savedir="pretrained_models/asr-crdnn-commonvoice-it")
asr_model.transcribe_file("speechbrain/asr-crdnn-commonvoice-it/example-it.wav")

```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

## Parallel Inference on a Batch
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.

### Training
The model was trained with SpeechBrain (Commit hash: '986a2175').
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```bash
cd recipes/CommonVoice/ASR/seq2seq
python train.py hparams/train_it.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1asxPsY1EBGHIpIFhBtUi9oiyR6C7gC0g?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.


```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```