File size: 3,972 Bytes
97464b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72d59b
 
 
97464b0
 
 
 
b3da5ae
97464b0
 
 
 
 
 
 
 
 
 
 
607478a
97464b0
 
 
 
 
ed5af6f
97464b0
 
53532a6
97464b0
 
d13c69a
97464b0
7788e58
97464b0
 
 
 
6ef51ef
97464b0
 
fbd405a
 
 
db62c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbcff38
db62c92
 
b47312a
db62c92
e57593e
 
 
97464b0
 
 
 
 
 
 
 
 
d86b6c8
97464b0
 
 
 
 
 
 
 
 
 
 
1a5721c
 
 
 
8be23ab
1a5721c
8be23ab
1a5721c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
language: "en"
thumbnail:
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- WSJ0-3Mix
- SepFormer
- Transformer 
license: "apache-2.0"
datasets:
- WSJ0-3Mix
metrics:
- SI-SNRi
- SDRi

---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# SepFormer trained on WSJ0-3Mix

This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) 
model, implemented with SpeechBrain, and pretrained on WSJ0-3Mix dataset. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is 19.8 dB SI-SNRi on the test set of WSJ0-3Mix dataset.

| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 09-03-21 | 19.8dB | 20.0dB |


## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform source separation on your own audio file

```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio

model = separator.from_hparams(source="speechbrain/sepformer-wsj03mix", savedir='pretrained_models/sepformer-wsj03mix')

est_sources = model.separate_file(path='speechbrain/sepformer-wsj03mix/test_mixture_3spks.wav') 

torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
torchaudio.save("source3hat.wav", est_sources[:, :, 2].detach().cpu(), 8000)

```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd  recipes/WSJ0Mix/separation
python train.py hparams/sepformer.yaml --data_folder=your_data_folder
```
Note: change num_spks to 3 in the yaml file.


You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1ruScDoqiSDNeoDa__u5472UUPKPu54b2?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing SpeechBrain

```
@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/speechbrain/speechbrain}},
  }
```

#### Referencing SepFormer
```
@inproceedings{subakan2021attention,
      title={Attention is All You Need in Speech Separation}, 
      author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
      year={2021},
      booktitle={ICASSP 2021}
}
```

#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.

Website: https://speechbrain.github.io/

GitHub: https://github.com/speechbrain/speechbrain