File size: 4,086 Bytes
97464b0 2a59fa2 e2cdbfb 97464b0 d72d59b 97464b0 b3da5ae 97464b0 607478a 97464b0 ed5af6f 97464b0 21e78b4 97464b0 d13c69a 97464b0 7788e58 97464b0 6ef51ef 97464b0 7798c99 fbd405a db62c92 cbcff38 db62c92 b47312a db62c92 e57593e 97464b0 70580d9 199dcd4 70580d9 199dcd4 70580d9 fa9f0ca 97464b0 70580d9 97464b0 1a5721c 70580d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
language: "en"
thumbnail:
tags:
- Source Separation
- Speech Separation
- Audio Source Separation
- WSJ0-3Mix
- SepFormer
- Transformer
- audio-to-audio
- audio-source-separation
- speechbrain
license: "apache-2.0"
datasets:
- WSJ0-3Mix
metrics:
- SI-SNRi
- SDRi
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# SepFormer trained on WSJ0-3Mix
This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2)
model, implemented with SpeechBrain, and pretrained on WSJ0-3Mix dataset. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is 19.8 dB SI-SNRi on the test set of WSJ0-3Mix dataset.
| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 09-03-21 | 19.8dB | 20.0dB |
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform source separation on your own audio file
```python
from speechbrain.inference.separation import SepformerSeparation as separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-wsj03mix", savedir='pretrained_models/sepformer-wsj03mix')
est_sources = model.separate_file(path='speechbrain/sepformer-wsj03mix/test_mixture_3spks.wav')
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
torchaudio.save("source3hat.wav", est_sources[:, :, 2].detach().cpu(), 8000)
```
The system expects input recordings sampled at 8kHz (single channel).
If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/WSJ0Mix/separation
python train.py hparams/sepformer.yaml --data_folder=your_data_folder
```
Note: change num_spks to 3 in the yaml file.
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1ruScDoqiSDNeoDa__u5472UUPKPu54b2?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
title={Attention is All You Need in Speech Separation},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/ |