srikarvar commited on
Commit
844fc0d
·
verified ·
1 Parent(s): eb6b539

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:2476
47
+ - loss:OnlineContrastiveLoss
48
+ widget:
49
+ - source_sentence: Would you want to be President?
50
+ sentences:
51
+ - Can you help me with my homework?
52
+ - How to bake cookies?
53
+ - Why do you want to be to president?
54
+ - source_sentence: Velocity of sound waves in the atmosphere
55
+ sentences:
56
+ - What is the speed of sound in air?
57
+ - What is the best/most memorable thing you've ever eaten and why?
58
+ - The `safe` option in the `to_spreadsheet` method controls whether a safe conversion
59
+ or not is needed for certain plant attributes to store the data in a SpreadsheetTable
60
+ or Row.
61
+ - source_sentence: Number of countries in the European Union
62
+ sentences:
63
+ - How many countries are in the European Union?
64
+ - Who painted the Sistine Chapel ceiling?
65
+ - The RecipeManager class is used to manage the downloading and extraction of recipes.
66
+ - source_sentence: Official currency of the USA
67
+ sentences:
68
+ - What is purpose of life?
69
+ - Files inside ZIP archives are accessed and yielded sequentially using iter_zip().
70
+ - What is the currency of the United States?
71
+ - source_sentence: Who wrote the book "1984"?
72
+ sentences:
73
+ - What is the speed of light?
74
+ - How to set up a home gym?
75
+ - Who wrote the book "To Kill a Mockingbird"?
76
+ model-index:
77
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
78
+ results:
79
+ - task:
80
+ type: binary-classification
81
+ name: Binary Classification
82
+ dataset:
83
+ name: pair class dev
84
+ type: pair-class-dev
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.8623188405797102
88
+ name: Cosine Accuracy
89
+ - type: cosine_accuracy_threshold
90
+ value: 0.8491722345352173
91
+ name: Cosine Accuracy Threshold
92
+ - type: cosine_f1
93
+ value: 0.8856304985337243
94
+ name: Cosine F1
95
+ - type: cosine_f1_threshold
96
+ value: 0.8245140314102173
97
+ name: Cosine F1 Threshold
98
+ - type: cosine_precision
99
+ value: 0.8435754189944135
100
+ name: Cosine Precision
101
+ - type: cosine_recall
102
+ value: 0.9320987654320988
103
+ name: Cosine Recall
104
+ - type: cosine_ap
105
+ value: 0.9266759550807792
106
+ name: Cosine Ap
107
+ - type: dot_accuracy
108
+ value: 0.8623188405797102
109
+ name: Dot Accuracy
110
+ - type: dot_accuracy_threshold
111
+ value: 0.8491722941398621
112
+ name: Dot Accuracy Threshold
113
+ - type: dot_f1
114
+ value: 0.8856304985337243
115
+ name: Dot F1
116
+ - type: dot_f1_threshold
117
+ value: 0.8245140910148621
118
+ name: Dot F1 Threshold
119
+ - type: dot_precision
120
+ value: 0.8435754189944135
121
+ name: Dot Precision
122
+ - type: dot_recall
123
+ value: 0.9320987654320988
124
+ name: Dot Recall
125
+ - type: dot_ap
126
+ value: 0.9266759550807792
127
+ name: Dot Ap
128
+ - type: manhattan_accuracy
129
+ value: 0.8623188405797102
130
+ name: Manhattan Accuracy
131
+ - type: manhattan_accuracy_threshold
132
+ value: 8.599637031555176
133
+ name: Manhattan Accuracy Threshold
134
+ - type: manhattan_f1
135
+ value: 0.8856304985337243
136
+ name: Manhattan F1
137
+ - type: manhattan_f1_threshold
138
+ value: 9.221129417419434
139
+ name: Manhattan F1 Threshold
140
+ - type: manhattan_precision
141
+ value: 0.8435754189944135
142
+ name: Manhattan Precision
143
+ - type: manhattan_recall
144
+ value: 0.9320987654320988
145
+ name: Manhattan Recall
146
+ - type: manhattan_ap
147
+ value: 0.9260061788962293
148
+ name: Manhattan Ap
149
+ - type: euclidean_accuracy
150
+ value: 0.8623188405797102
151
+ name: Euclidean Accuracy
152
+ - type: euclidean_accuracy_threshold
153
+ value: 0.5491920709609985
154
+ name: Euclidean Accuracy Threshold
155
+ - type: euclidean_f1
156
+ value: 0.8856304985337243
157
+ name: Euclidean F1
158
+ - type: euclidean_f1_threshold
159
+ value: 0.5924187898635864
160
+ name: Euclidean F1 Threshold
161
+ - type: euclidean_precision
162
+ value: 0.8435754189944135
163
+ name: Euclidean Precision
164
+ - type: euclidean_recall
165
+ value: 0.9320987654320988
166
+ name: Euclidean Recall
167
+ - type: euclidean_ap
168
+ value: 0.9266759550807792
169
+ name: Euclidean Ap
170
+ - type: max_accuracy
171
+ value: 0.8623188405797102
172
+ name: Max Accuracy
173
+ - type: max_accuracy_threshold
174
+ value: 8.599637031555176
175
+ name: Max Accuracy Threshold
176
+ - type: max_f1
177
+ value: 0.8856304985337243
178
+ name: Max F1
179
+ - type: max_f1_threshold
180
+ value: 9.221129417419434
181
+ name: Max F1 Threshold
182
+ - type: max_precision
183
+ value: 0.8435754189944135
184
+ name: Max Precision
185
+ - type: max_recall
186
+ value: 0.9320987654320988
187
+ name: Max Recall
188
+ - type: max_ap
189
+ value: 0.9266759550807792
190
+ name: Max Ap
191
+ - task:
192
+ type: binary-classification
193
+ name: Binary Classification
194
+ dataset:
195
+ name: pair class test
196
+ type: pair-class-test
197
+ metrics:
198
+ - type: cosine_accuracy
199
+ value: 0.8659420289855072
200
+ name: Cosine Accuracy
201
+ - type: cosine_accuracy_threshold
202
+ value: 0.8320531249046326
203
+ name: Cosine Accuracy Threshold
204
+ - type: cosine_f1
205
+ value: 0.8875379939209727
206
+ name: Cosine F1
207
+ - type: cosine_f1_threshold
208
+ value: 0.8320531249046326
209
+ name: Cosine F1 Threshold
210
+ - type: cosine_precision
211
+ value: 0.874251497005988
212
+ name: Cosine Precision
213
+ - type: cosine_recall
214
+ value: 0.9012345679012346
215
+ name: Cosine Recall
216
+ - type: cosine_ap
217
+ value: 0.9257692996006023
218
+ name: Cosine Ap
219
+ - type: dot_accuracy
220
+ value: 0.8659420289855072
221
+ name: Dot Accuracy
222
+ - type: dot_accuracy_threshold
223
+ value: 0.8320530652999878
224
+ name: Dot Accuracy Threshold
225
+ - type: dot_f1
226
+ value: 0.8875379939209727
227
+ name: Dot F1
228
+ - type: dot_f1_threshold
229
+ value: 0.8320530652999878
230
+ name: Dot F1 Threshold
231
+ - type: dot_precision
232
+ value: 0.874251497005988
233
+ name: Dot Precision
234
+ - type: dot_recall
235
+ value: 0.9012345679012346
236
+ name: Dot Recall
237
+ - type: dot_ap
238
+ value: 0.9257692996006023
239
+ name: Dot Ap
240
+ - type: manhattan_accuracy
241
+ value: 0.8623188405797102
242
+ name: Manhattan Accuracy
243
+ - type: manhattan_accuracy_threshold
244
+ value: 8.854782104492188
245
+ name: Manhattan Accuracy Threshold
246
+ - type: manhattan_f1
247
+ value: 0.8875739644970415
248
+ name: Manhattan F1
249
+ - type: manhattan_f1_threshold
250
+ value: 9.349273681640625
251
+ name: Manhattan F1 Threshold
252
+ - type: manhattan_precision
253
+ value: 0.8522727272727273
254
+ name: Manhattan Precision
255
+ - type: manhattan_recall
256
+ value: 0.9259259259259259
257
+ name: Manhattan Recall
258
+ - type: manhattan_ap
259
+ value: 0.9255387736459155
260
+ name: Manhattan Ap
261
+ - type: euclidean_accuracy
262
+ value: 0.8659420289855072
263
+ name: Euclidean Accuracy
264
+ - type: euclidean_accuracy_threshold
265
+ value: 0.5795620679855347
266
+ name: Euclidean Accuracy Threshold
267
+ - type: euclidean_f1
268
+ value: 0.8875379939209727
269
+ name: Euclidean F1
270
+ - type: euclidean_f1_threshold
271
+ value: 0.5795620679855347
272
+ name: Euclidean F1 Threshold
273
+ - type: euclidean_precision
274
+ value: 0.874251497005988
275
+ name: Euclidean Precision
276
+ - type: euclidean_recall
277
+ value: 0.9012345679012346
278
+ name: Euclidean Recall
279
+ - type: euclidean_ap
280
+ value: 0.9257692996006023
281
+ name: Euclidean Ap
282
+ - type: max_accuracy
283
+ value: 0.8659420289855072
284
+ name: Max Accuracy
285
+ - type: max_accuracy_threshold
286
+ value: 8.854782104492188
287
+ name: Max Accuracy Threshold
288
+ - type: max_f1
289
+ value: 0.8875739644970415
290
+ name: Max F1
291
+ - type: max_f1_threshold
292
+ value: 9.349273681640625
293
+ name: Max F1 Threshold
294
+ - type: max_precision
295
+ value: 0.874251497005988
296
+ name: Max Precision
297
+ - type: max_recall
298
+ value: 0.9259259259259259
299
+ name: Max Recall
300
+ - type: max_ap
301
+ value: 0.9257692996006023
302
+ name: Max Ap
303
+ ---
304
+
305
+ # SentenceTransformer based on intfloat/multilingual-e5-small
306
+
307
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
308
+
309
+ ## Model Details
310
+
311
+ ### Model Description
312
+ - **Model Type:** Sentence Transformer
313
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
314
+ - **Maximum Sequence Length:** 512 tokens
315
+ - **Output Dimensionality:** 384 tokens
316
+ - **Similarity Function:** Cosine Similarity
317
+ <!-- - **Training Dataset:** Unknown -->
318
+ <!-- - **Language:** Unknown -->
319
+ <!-- - **License:** Unknown -->
320
+
321
+ ### Model Sources
322
+
323
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
324
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
325
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
326
+
327
+ ### Full Model Architecture
328
+
329
+ ```
330
+ SentenceTransformer(
331
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
332
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
333
+ (2): Normalize()
334
+ )
335
+ ```
336
+
337
+ ## Usage
338
+
339
+ ### Direct Usage (Sentence Transformers)
340
+
341
+ First install the Sentence Transformers library:
342
+
343
+ ```bash
344
+ pip install -U sentence-transformers
345
+ ```
346
+
347
+ Then you can load this model and run inference.
348
+ ```python
349
+ from sentence_transformers import SentenceTransformer
350
+
351
+ # Download from the 🤗 Hub
352
+ model = SentenceTransformer("srikarvar/fine_tuned_model_9")
353
+ # Run inference
354
+ sentences = [
355
+ 'Who wrote the book "1984"?',
356
+ 'Who wrote the book "To Kill a Mockingbird"?',
357
+ 'What is the speed of light?',
358
+ ]
359
+ embeddings = model.encode(sentences)
360
+ print(embeddings.shape)
361
+ # [3, 384]
362
+
363
+ # Get the similarity scores for the embeddings
364
+ similarities = model.similarity(embeddings, embeddings)
365
+ print(similarities.shape)
366
+ # [3, 3]
367
+ ```
368
+
369
+ <!--
370
+ ### Direct Usage (Transformers)
371
+
372
+ <details><summary>Click to see the direct usage in Transformers</summary>
373
+
374
+ </details>
375
+ -->
376
+
377
+ <!--
378
+ ### Downstream Usage (Sentence Transformers)
379
+
380
+ You can finetune this model on your own dataset.
381
+
382
+ <details><summary>Click to expand</summary>
383
+
384
+ </details>
385
+ -->
386
+
387
+ <!--
388
+ ### Out-of-Scope Use
389
+
390
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
391
+ -->
392
+
393
+ ## Evaluation
394
+
395
+ ### Metrics
396
+
397
+ #### Binary Classification
398
+ * Dataset: `pair-class-dev`
399
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
400
+
401
+ | Metric | Value |
402
+ |:-----------------------------|:-----------|
403
+ | cosine_accuracy | 0.8623 |
404
+ | cosine_accuracy_threshold | 0.8492 |
405
+ | cosine_f1 | 0.8856 |
406
+ | cosine_f1_threshold | 0.8245 |
407
+ | cosine_precision | 0.8436 |
408
+ | cosine_recall | 0.9321 |
409
+ | cosine_ap | 0.9267 |
410
+ | dot_accuracy | 0.8623 |
411
+ | dot_accuracy_threshold | 0.8492 |
412
+ | dot_f1 | 0.8856 |
413
+ | dot_f1_threshold | 0.8245 |
414
+ | dot_precision | 0.8436 |
415
+ | dot_recall | 0.9321 |
416
+ | dot_ap | 0.9267 |
417
+ | manhattan_accuracy | 0.8623 |
418
+ | manhattan_accuracy_threshold | 8.5996 |
419
+ | manhattan_f1 | 0.8856 |
420
+ | manhattan_f1_threshold | 9.2211 |
421
+ | manhattan_precision | 0.8436 |
422
+ | manhattan_recall | 0.9321 |
423
+ | manhattan_ap | 0.926 |
424
+ | euclidean_accuracy | 0.8623 |
425
+ | euclidean_accuracy_threshold | 0.5492 |
426
+ | euclidean_f1 | 0.8856 |
427
+ | euclidean_f1_threshold | 0.5924 |
428
+ | euclidean_precision | 0.8436 |
429
+ | euclidean_recall | 0.9321 |
430
+ | euclidean_ap | 0.9267 |
431
+ | max_accuracy | 0.8623 |
432
+ | max_accuracy_threshold | 8.5996 |
433
+ | max_f1 | 0.8856 |
434
+ | max_f1_threshold | 9.2211 |
435
+ | max_precision | 0.8436 |
436
+ | max_recall | 0.9321 |
437
+ | **max_ap** | **0.9267** |
438
+
439
+ #### Binary Classification
440
+ * Dataset: `pair-class-test`
441
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
442
+
443
+ | Metric | Value |
444
+ |:-----------------------------|:-----------|
445
+ | cosine_accuracy | 0.8659 |
446
+ | cosine_accuracy_threshold | 0.8321 |
447
+ | cosine_f1 | 0.8875 |
448
+ | cosine_f1_threshold | 0.8321 |
449
+ | cosine_precision | 0.8743 |
450
+ | cosine_recall | 0.9012 |
451
+ | cosine_ap | 0.9258 |
452
+ | dot_accuracy | 0.8659 |
453
+ | dot_accuracy_threshold | 0.8321 |
454
+ | dot_f1 | 0.8875 |
455
+ | dot_f1_threshold | 0.8321 |
456
+ | dot_precision | 0.8743 |
457
+ | dot_recall | 0.9012 |
458
+ | dot_ap | 0.9258 |
459
+ | manhattan_accuracy | 0.8623 |
460
+ | manhattan_accuracy_threshold | 8.8548 |
461
+ | manhattan_f1 | 0.8876 |
462
+ | manhattan_f1_threshold | 9.3493 |
463
+ | manhattan_precision | 0.8523 |
464
+ | manhattan_recall | 0.9259 |
465
+ | manhattan_ap | 0.9255 |
466
+ | euclidean_accuracy | 0.8659 |
467
+ | euclidean_accuracy_threshold | 0.5796 |
468
+ | euclidean_f1 | 0.8875 |
469
+ | euclidean_f1_threshold | 0.5796 |
470
+ | euclidean_precision | 0.8743 |
471
+ | euclidean_recall | 0.9012 |
472
+ | euclidean_ap | 0.9258 |
473
+ | max_accuracy | 0.8659 |
474
+ | max_accuracy_threshold | 8.8548 |
475
+ | max_f1 | 0.8876 |
476
+ | max_f1_threshold | 9.3493 |
477
+ | max_precision | 0.8743 |
478
+ | max_recall | 0.9259 |
479
+ | **max_ap** | **0.9258** |
480
+
481
+ <!--
482
+ ## Bias, Risks and Limitations
483
+
484
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
485
+ -->
486
+
487
+ <!--
488
+ ### Recommendations
489
+
490
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
491
+ -->
492
+
493
+ ## Training Details
494
+
495
+ ### Training Dataset
496
+
497
+ #### Unnamed Dataset
498
+
499
+
500
+ * Size: 2,476 training samples
501
+ * Columns: <code>sentence2</code>, <code>label</code>, and <code>sentence1</code>
502
+ * Approximate statistics based on the first 1000 samples:
503
+ | | sentence2 | label | sentence1 |
504
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
505
+ | type | string | int | string |
506
+ | details | <ul><li>min: 4 tokens</li><li>mean: 16.06 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>0: ~40.20%</li><li>1: ~59.80%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.35 tokens</li><li>max: 98 tokens</li></ul> |
507
+ * Samples:
508
+ | sentence2 | label | sentence1 |
509
+ |:--------------------------------------------------------------------------------------------------------|:---------------|:----------------------------------------------------------------------------------------------------------|
510
+ | <code>A model is trained using the ImageNet dataset to classify images into distinct categories.</code> | <code>1</code> | <code>The ImageNet dataset is used for training models to classify images into various categories.</code> |
511
+ | <code>Version 5.3.1 does not contain it.</code> | <code>1</code> | <code>No, it doesn't exist in version 5.3.1.</code> |
512
+ | <code>Can you do my homework for me?</code> | <code>0</code> | <code>Can you help me with my homework?</code> |
513
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
514
+
515
+ ### Evaluation Dataset
516
+
517
+ #### Unnamed Dataset
518
+
519
+
520
+ * Size: 276 evaluation samples
521
+ * Columns: <code>sentence2</code>, <code>label</code>, and <code>sentence1</code>
522
+ * Approximate statistics based on the first 276 samples:
523
+ | | sentence2 | label | sentence1 |
524
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
525
+ | type | string | int | string |
526
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.34 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>0: ~41.30%</li><li>1: ~58.70%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.56 tokens</li><li>max: 87 tokens</li></ul> |
527
+ * Samples:
528
+ | sentence2 | label | sentence1 |
529
+ |:---------------------------------------------------------------------------------------------------------------------------|:---------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
530
+ | <code>How is AI used to enhance cybersecurity?</code> | <code>0</code> | <code>What are the challenges of AI in cybersecurity?</code> |
531
+ | <code>The SYSTEM log documentation can be accessed by clicking on the link which will take you to the main version.</code> | <code>1</code> | <code>You can find the SYSTEM log documentation on the main version. Click on the provided link to redirect to the main version of the documentation.</code> |
532
+ | <code>Name the capital city of Italy</code> | <code>1</code> | <code>What is the capital of Italy?</code> |
533
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
534
+
535
+ ### Training Hyperparameters
536
+ #### Non-Default Hyperparameters
537
+
538
+ - `eval_strategy`: epoch
539
+ - `per_device_train_batch_size`: 32
540
+ - `per_device_eval_batch_size`: 32
541
+ - `gradient_accumulation_steps`: 2
542
+ - `num_train_epochs`: 4
543
+ - `warmup_ratio`: 0.1
544
+ - `load_best_model_at_end`: True
545
+ - `optim`: adamw_torch_fused
546
+ - `batch_sampler`: no_duplicates
547
+
548
+ #### All Hyperparameters
549
+ <details><summary>Click to expand</summary>
550
+
551
+ - `overwrite_output_dir`: False
552
+ - `do_predict`: False
553
+ - `eval_strategy`: epoch
554
+ - `prediction_loss_only`: True
555
+ - `per_device_train_batch_size`: 32
556
+ - `per_device_eval_batch_size`: 32
557
+ - `per_gpu_train_batch_size`: None
558
+ - `per_gpu_eval_batch_size`: None
559
+ - `gradient_accumulation_steps`: 2
560
+ - `eval_accumulation_steps`: None
561
+ - `learning_rate`: 5e-05
562
+ - `weight_decay`: 0.0
563
+ - `adam_beta1`: 0.9
564
+ - `adam_beta2`: 0.999
565
+ - `adam_epsilon`: 1e-08
566
+ - `max_grad_norm`: 1.0
567
+ - `num_train_epochs`: 4
568
+ - `max_steps`: -1
569
+ - `lr_scheduler_type`: linear
570
+ - `lr_scheduler_kwargs`: {}
571
+ - `warmup_ratio`: 0.1
572
+ - `warmup_steps`: 0
573
+ - `log_level`: passive
574
+ - `log_level_replica`: warning
575
+ - `log_on_each_node`: True
576
+ - `logging_nan_inf_filter`: True
577
+ - `save_safetensors`: True
578
+ - `save_on_each_node`: False
579
+ - `save_only_model`: False
580
+ - `restore_callback_states_from_checkpoint`: False
581
+ - `no_cuda`: False
582
+ - `use_cpu`: False
583
+ - `use_mps_device`: False
584
+ - `seed`: 42
585
+ - `data_seed`: None
586
+ - `jit_mode_eval`: False
587
+ - `use_ipex`: False
588
+ - `bf16`: False
589
+ - `fp16`: False
590
+ - `fp16_opt_level`: O1
591
+ - `half_precision_backend`: auto
592
+ - `bf16_full_eval`: False
593
+ - `fp16_full_eval`: False
594
+ - `tf32`: None
595
+ - `local_rank`: 0
596
+ - `ddp_backend`: None
597
+ - `tpu_num_cores`: None
598
+ - `tpu_metrics_debug`: False
599
+ - `debug`: []
600
+ - `dataloader_drop_last`: False
601
+ - `dataloader_num_workers`: 0
602
+ - `dataloader_prefetch_factor`: None
603
+ - `past_index`: -1
604
+ - `disable_tqdm`: False
605
+ - `remove_unused_columns`: True
606
+ - `label_names`: None
607
+ - `load_best_model_at_end`: True
608
+ - `ignore_data_skip`: False
609
+ - `fsdp`: []
610
+ - `fsdp_min_num_params`: 0
611
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
612
+ - `fsdp_transformer_layer_cls_to_wrap`: None
613
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
614
+ - `deepspeed`: None
615
+ - `label_smoothing_factor`: 0.0
616
+ - `optim`: adamw_torch_fused
617
+ - `optim_args`: None
618
+ - `adafactor`: False
619
+ - `group_by_length`: False
620
+ - `length_column_name`: length
621
+ - `ddp_find_unused_parameters`: None
622
+ - `ddp_bucket_cap_mb`: None
623
+ - `ddp_broadcast_buffers`: False
624
+ - `dataloader_pin_memory`: True
625
+ - `dataloader_persistent_workers`: False
626
+ - `skip_memory_metrics`: True
627
+ - `use_legacy_prediction_loop`: False
628
+ - `push_to_hub`: False
629
+ - `resume_from_checkpoint`: None
630
+ - `hub_model_id`: None
631
+ - `hub_strategy`: every_save
632
+ - `hub_private_repo`: False
633
+ - `hub_always_push`: False
634
+ - `gradient_checkpointing`: False
635
+ - `gradient_checkpointing_kwargs`: None
636
+ - `include_inputs_for_metrics`: False
637
+ - `eval_do_concat_batches`: True
638
+ - `fp16_backend`: auto
639
+ - `push_to_hub_model_id`: None
640
+ - `push_to_hub_organization`: None
641
+ - `mp_parameters`:
642
+ - `auto_find_batch_size`: False
643
+ - `full_determinism`: False
644
+ - `torchdynamo`: None
645
+ - `ray_scope`: last
646
+ - `ddp_timeout`: 1800
647
+ - `torch_compile`: False
648
+ - `torch_compile_backend`: None
649
+ - `torch_compile_mode`: None
650
+ - `dispatch_batches`: None
651
+ - `split_batches`: None
652
+ - `include_tokens_per_second`: False
653
+ - `include_num_input_tokens_seen`: False
654
+ - `neftune_noise_alpha`: None
655
+ - `optim_target_modules`: None
656
+ - `batch_eval_metrics`: False
657
+ - `batch_sampler`: no_duplicates
658
+ - `multi_dataset_batch_sampler`: proportional
659
+
660
+ </details>
661
+
662
+ ### Training Logs
663
+ | Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
664
+ |:-------:|:-------:|:-------------:|:----------:|:---------------------:|:----------------------:|
665
+ | 0 | 0 | - | - | 0.7876 | - |
666
+ | 0.2564 | 10 | 1.6257 | - | - | - |
667
+ | 0.5128 | 20 | 0.8138 | - | - | - |
668
+ | 0.7692 | 30 | 0.7276 | - | - | - |
669
+ | 1.0 | 39 | - | 0.8190 | 0.9089 | - |
670
+ | 1.0256 | 40 | 0.6423 | - | - | - |
671
+ | 1.2821 | 50 | 0.5168 | - | - | - |
672
+ | 1.5385 | 60 | 0.3583 | - | - | - |
673
+ | 1.7949 | 70 | 0.3182 | - | - | - |
674
+ | 2.0 | 78 | - | 0.7351 | 0.9215 | - |
675
+ | 2.0513 | 80 | 0.3521 | - | - | - |
676
+ | 2.3077 | 90 | 0.2037 | - | - | - |
677
+ | 2.5641 | 100 | 0.1293 | - | - | - |
678
+ | 2.8205 | 110 | 0.1374 | - | - | - |
679
+ | **3.0** | **117** | **-** | **0.7223** | **0.9258** | **-** |
680
+ | 3.0769 | 120 | 0.198 | - | - | - |
681
+ | 3.3333 | 130 | 0.0667 | - | - | - |
682
+ | 3.5897 | 140 | 0.0526 | - | - | - |
683
+ | 3.8462 | 150 | 0.0652 | - | - | - |
684
+ | 4.0 | 156 | - | 0.7327 | 0.9267 | 0.9258 |
685
+
686
+ * The bold row denotes the saved checkpoint.
687
+
688
+ ### Framework Versions
689
+ - Python: 3.10.12
690
+ - Sentence Transformers: 3.1.0
691
+ - Transformers: 4.41.2
692
+ - PyTorch: 2.1.2+cu121
693
+ - Accelerate: 0.34.2
694
+ - Datasets: 2.19.1
695
+ - Tokenizers: 0.19.1
696
+
697
+ ## Citation
698
+
699
+ ### BibTeX
700
+
701
+ #### Sentence Transformers
702
+ ```bibtex
703
+ @inproceedings{reimers-2019-sentence-bert,
704
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
705
+ author = "Reimers, Nils and Gurevych, Iryna",
706
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
707
+ month = "11",
708
+ year = "2019",
709
+ publisher = "Association for Computational Linguistics",
710
+ url = "https://arxiv.org/abs/1908.10084",
711
+ }
712
+ ```
713
+
714
+ <!--
715
+ ## Glossary
716
+
717
+ *Clearly define terms in order to be accessible across audiences.*
718
+ -->
719
+
720
+ <!--
721
+ ## Model Card Authors
722
+
723
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
724
+ -->
725
+
726
+ <!--
727
+ ## Model Card Contact
728
+
729
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
730
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad9e13536baf3e9c47400bd3ecec72c8eabe98232a8631d0c45403fa91f3c69b
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }